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CHAPTER 6 MULTIPLICATION OF INTEGERS

6.1 Operational . and (Z,
In Chapter 4 we learned how to add and subtract

integers. It is natural to ask how integers should be

multiplied.
With respect to the operation of addition, the whole

numbers are isomorphic to the positive integers. That

is, addition of whole numbers is just like addition of
positive integers. It is reasonable to require that mul-
tiplication preserve this close relationship between the

whole numbers and positive integers. Let us recall
someof the properties of (W, ) which we should like

to carry over into (Z, ).

1. For all whole numbers a and b, a b = b. a.
(Commutative Property of Multiplication)
For example: 3.7 = 7.3

2. For all whole numbers a, b, and c, a (b. c)

(a b) c.
(Associative Property of Multiplication)
For example: (2 3). 4 = 2 (3.4)

3. For every whole number a, 1 a = a 1 = a.
( 1 is a Multiplicative Identity in W)

For example: 1 -7 = 7.1 =7

4. For every whole number a, a 0 = 0 a =0.
(Multiplication Property of Zero)
For example: 3.0 =0.3 =0

5. For all whole numbers a, b, and c, if c 0 and

c- a = c b, then a = b.
(Cancellation Property of Multiplication)
For example- If 7.a = 7.13 then a =13

There is one property of theoperational system
(W, +, ) which relates the operations of addition

and multiplication. This property is illustrated in the

following example.
Suppose we compute the product 7x13 in the usual

way:

13
x7

91

In this computation, we have actually computed two

simpler products

74 = 21 and 7x10 = 70

and then computed their sum

21+70 =91

The reason this works is easy to understand if we pic-

ture the product 7x13 as a rectangular array that has

been split into two arrays:
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On the left we have a 7x10 array and on the right a 7,3

array. The number of elements in the array does not

change by the splitting, so we have

7(10 +3) =7.10+ 7-3

Similarly, we know that

7(4 +6) = 7.4 +7.6,
13- (98 + 2) =13.98 + 13.2,

or in general

6. For any whole numbers a, b, and c,

a (b + c) = a b + a c.
(Distributive Property of Multiplication over
Addition)

We should also like the distributive property to apply

in (Z, +, -).

6.2 Exercises
1. For each of the following state the property for

multiplication of whole numbers that justifies
the equality.

(a) 87 x 1 =1 x 87

(b) 87 x 1 = 87

(c) (98 97) x 46 = 46

(d) 5 x (2 x 83) = (5 x 2) x 83

(e) (25 x 38) x 4= (38 x 25) x 4

(f) (38 x 25) x 4 =38 x (25 x 4)

2. Without computing justify:

(0)(43 x 28) x 76 = (76 x 43) x 28

(b) 87 x (43 x 76) = (87 x 76) x 43

(c) 8 x (69 x 25) =69 x (25 x 8)

3. State the commutative property for addition of



whole numbers.

4. State the associative property for addition of
whole numbers.

5. What is the identity element for addition of
whole numbers?

6. What is the identity element (if there is one)
for each of the following systems.

(a) (Z5,+) (f) (We +)

(b) (Z5, ) (g) (Z, +1

(c) (Z6,+) (h) (W,+)

(d) (Z6, - ) (i ) (W, )

(e) (Vi, +) (j ) (Z,-)
7. Compute each of the following:

(a) 8 x (9 x 7) (d) (8 x 7) x 9

(b) 9 x (8 x 7) (e) (47 x 73) + (47 x 27)

(c) 7x (9 x 8) (f) (47 x 73) - (47 x 27)

*8. Using the properties of this section, prove that
if r, s, t are whole numbers,

(a)

(b)

(r s) t = (r t) s (c) r (s t) = (r t) s
(r s). t = (t s) r (d) r (s t) = s (t r)

For example, exercise (a) may be done as follows:

(r s) t = r (s 0 Multiplication of whole num-
numbers is associative.

= r (t s) Multiplication of whole num-
bers is commutative.

= (r. t) s Multiplication of whole num-
bers is associative.

9. From your experience with multiplication of
whole numbers what seems to be true if the fac-
tors are ordered and grouped differently? (The
generalization referred to here is sometimes

called "the rearrangement property for multi-
plication of whole numbers".)

10. Consider the two sets (Sandwiches and Bever-
ages)

S = {cheese, jelly, peanut butter} which is ab-
breviated {c, j, p} and B= {milk, tea} which we
abbreviate {m, t }.

(a) Interpret the ordered pair (j, m).

(b) List all the possible ordered pairs that can
be obtained by using an element of S as the
first element and an element of B as the
second element of each ordered pair.

(c) How many ordered pairs did you get in (b)?

.(d) List all the ordered pairs if the first ele-
ment must come from B and the second from
S.

(e) How many did you get now?
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(f)
(g)

What property seems to be illustrated here?

Suppose S or B had just one element. How
many ordered pairs would we now get?

(h) Suppose S or B had 0 elements. How many
ordered pairs would we get? What generaliz-
ation does this suggest regarding a product
having 0 as a factor?

11. Compute

(a) 7x (20 +7) (e) (47 x 39) - (47 x 29)

(b) (7 x 20) + (7 x 7) (f) (37 x 43) - (27 x 43)

(c) (23 x87) + (23 x13) (g) (61. x 8) + (61. x 12)

(d) (76 x 38)+(24 x38) (h) (61. x 3P + (61. x 6)
*12. Wing the fact that multiplication of whole num-

bers is commutative and distributive over addi-
tion, prove that for all whole numbers a, b, and c,

(a) (b+ c)a =ba+ca (Recall that ba = b a, ca
= c- a, etc.)

(b) a(b - c) = ab -ac whenever b is not less
than c

(c) (b- c)a =ba - ca whenever b is not less
than c

13. Is it true that 5 +(2 x 4) = (5 +2) x (5 +4)?

14. Is addition distributive over multiplication in
(W, +, )?

6.3 Multiplication for Z
In order to define multiplication as an operation in

Z, we must show how to assign to each order pair (a, b)

of integers a third integer c called "the product of a
and b". We will use the definition of multiplication for
whole numbers and the six properties we want preserved,
as guides to the rule of assignment for " " in Z. Under
these circumstances, there are three cases which must
considered in making our definition:

1. Both a and b are positive.

2. Both a and b are negative.

3. a is positive and b is negative.

We also want our definition to make sense in situations
where the integers have applications to real life prob-

lems.

Question: Why is it unnecessary to consider the
case "a negative, b positive"?

6.4 Multiplication of Positive Integers

The systems (W, +) and (W, +) are isomorphic. In

fact; both of these systems are isomorphic to (P, +)

where P is the set of positive integers. The isomorph-

ism may be illustrated by

54.. 5......+5
4 4

4 + 5 .4 + '5+5 .---.°.1-4



We already know how to multiply whole numbers.
Thi s knowledge suggests a definition of multiplication
for the positive integers.

3 x 4 = 12

11 x 14 = 154

8 x 0 = 0

suggests

suggests

suggests

+3 x 44 =

411 Y 414

+8 x +0 =

=

+0

54

These examples imply that we should make the
following definitions: The product of two positive in-
tegers is the unique positive integer whose absolute
value is the product of the absolute values of the fact-

ors. For every positive integer a, a; +0 = +0 -a = O.

6.5 Multiplication of a Positive Integer and a Negative

Integer
Since (under + and ) the positive integers behave

exactly !ike the whole numbers, let us agree to delete
the elevated plus sign. For example, instead of warns)
"+2" we shall write simply "2" and think of 2 as be-
ing a positive integer without saying "positive". We

shall write "0" rather than "+0" or "b" and think of
0 as being the addition identity element for integers.
Moreover, it will be more convenient to regard only the
strictly positive integers as being positive and the
strictly negative integers as negative. With this agree-
ment, every integer is either positive, zero, or nega-
tive. In other words, for every integer n, exactly one of

these conditions must hold

0 < n, 0 =n, or n < 0.

Let us now write a few computations that may sug-
gest what the product of a positive integer and a nega-

tive integer should be.

3 x 3 = 9 3 x 3 = 9

3 x 2 =6 2 x 3 =6

3 x 1 =3 1 x 3 = 3

3 x 0 =0 0 x 3 =0

3 x -1 =0 -1x3 =D
3 x -2 =0 -2 x 3 =O

3 x -3 = -3 x 3 =

Ir: the left column of equalities the second factor de-
creased by 1 as we move down. In the right column of
equalities, the first factor is being reduced by 1. In

both columns the products are decreasing by 3. These

lists suggest that the products for the last three lines
should be -3, -6, and -9 if the products are to con-
tinue to decrease by 3. It appears that the product of

a positive integer and a negative integer should be
negative regardless of which is the first of the pair.
Furthermore, the absolute value of the product should

again be the same as the product of the absolute val-
ues of the factors.

Therefore, if r and s are two integers, one nega-
tive and the other positive, we define the product i s
to be the unique negative integer with absolute value
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,4.+A 44

equal to IrlIsI .. It follows from this definition
that r s = s .r.

Later we shall give other reasons for adopting this
definition and suggest a mothematical basis for deriv-

ing them. Let us now see some illustrative examples.

Example 1: Compute -8 x7

1-8x7 1=1-8 ix 17 l

= 8 x 7 (Note: Here 8 and
7 are whole num-
bers)

=56

Since -8 is negative and 7 is posi-
tive, -8 x 7 is a negative integer.
Hence, -8 x 7 = -56.

Example 2: Compute 9 x 6

1 9 x-6 1= 19 lx 1-61

= 9 x 6

=54

Therefore, 9 x 6 = -54.

Example 3: Compute (4 x -3) x 2

(4 x -3) x 2 = -12 x 2

=

6.6 The Product of Two Negative Integers
The only remaining products to be considered are

those involving two negative integers. Once again let

us try to obtain a clue by recognizing a pattern.

-3 x 3 = -9 3 x -3 = -9

-3 x 2 = -6 2 x -3 = -6

-3 x 1 = -3 1 x -3 = -3

-3 x 0 = 0 x =[:1

-3 x -1 =0 -1 x -3 4:3

-3 x -2 =0 -2 x -3 =0
-3 x -3 =0 -3 x -3 =1:3

In the left column of equalities the second factor is
being reduced by 1 in moving down. In the right column

of equalities the first factor is being reduced by 1. In

both columns, the products are increasing by 3. The
above lists suggest that the last four products should

be 0, 3, 6 and 9 if the products are to continue to in-

crease by 3.
These examples suggest the following definitions:

The product of a pair of negative integers is the unique

positive integer which has absolute value equal to the

product of the absolute values of the factors. For
every negative integer a, a 0 = 0.a = 0. Later we
shall give other reasons for adopting these definitions
and suggest a mathematical derivation.

We can summarize our definition of multiplication
of integers as follows:

For all integers r and s,

Ver 40.101E;



1. irs I= 11'1 Isl.
2. If r and s are both positive or both negative, r s

is positive.

3. If r and s are such that one is positive and the

other negative, r s is negative.

4. r 0 = 0 - r = O.

With the above definition as rules for the assignment,
multiplication is an operation on Z. That is, for each
ordered pair (a,b) of integers there is a unique integer
c = a b called "the product of a and b". Furthermore,
it can be shown that the six properties of (W, +, )

stated in section 6.1 are also properties of (Z, +, ).
The general rules for multiplication of integers may

be clarified by the following illustrative examples.

Example 1: Compute -3 x -4

1-3 x -41= 1-3 1 x 1-'41

= 3 x 4

= 12.

Since -3 and -4 are both negative,
the product is positive. Hence, -3 x
-4 = 12 (What kind of number is 12
here?)

Example 2: Compute (-7 x -2) x -3

(-7 x -2) x -3 = 14 x -3
= -42,

Example 3: Compute x (6 x -4)
-9 x (6 x -4) = -9 x -24

= 216

6.7 Exercises
1. Compute:

(a) -23 x 27

(b) 33 x -37

(c) -43 x -47

(d) -57 x -53

2. Compute:

(a) (-17 x -7) + (-17 x -3)

(b) (-17) x (-7 + -3)

(c) (-38 x 37) + (28 x 37)

(d) (38 +28) x 37

(e) (-83 x -67) +(-27 x -67)

(f) (-37 x 73) + (37 +73)

*3. Supposes, s, andiare integers.

(a) Give a rule for determining whether (r s) t
is positive or negative. What about r (s. t)?

(b) Try to justify that s) t = I r (s t) 1

(c) Give a general way of computing 1 (r - s) t I

(e) -5 x (2 x -47)

(f) ("5x 2) x -47
(9) (-43 x -4) x-25
(h) -43 x (-4 x -25)
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(d) Prove that

(1) r- (st) (r- s)-t

(2) r-s - sr
4. Let us return to considering an integer as a set

of ordered pairs and see how multiplication may
be defined. You recall:

+3 = { (0,3), (1,4), (2,5),

-2 = { (2,0), (3,1), (4,2),

6 = { (6,0), (7,1), (8,2),

Let us define a multiplication of two ordered pairs as

follows:

(a, b) (c,d) = (ad+bc, ac+bd)

so that (2,5)- (5,3) = (6+25, 10+15)

= (31,25)

Observe that (31,25) is in the set for

(a) Take two other ordered pairs, one from +3

and one from -2. Is their product in -6?
Reverse the order of the factors. Is their
product the same?

(b) Take oneordered pair from -3 and one from
-2. Is their product in +6? Reverse the order
of the factors. Is their product the same?

*(c) Check that [-4 x (-3 + 42) ] and [ (-4 x
-3) + (-4 x +2) 1 are ordered pairs of the
same integer by using in place of each in-
teger one of its ordered pairs and then using
the definitions of addition and multiplication
of ordered pairs.

*(d) Check that [(-4 x -3) x +2] and [ -4 x
("3 x +2)] are ordered pairs of the same
integer by the method used in (c).

*(e) Assume the familiar properties of addition
and multiplication for whole numbers. Use
the ordered pairs of whole numbers,

(a,b), (c,d), (e,f)

to check that:

(1) Addition of integers

a. is commutative: [(a,b)+(c,d)1
[(c,d)+(a,b)] are ordered pairs
same integer.

b. is associative

(2) The sum (d,d)+(a,b) and (a,b) are ordered
pairs of the same integer.

(3) The sum (a,b)+(b,a) is an ordered pair

of the integer 0.

(4) Multiplication of integers

a. is commutative: (a,b)(c,d) and
(c,d) (a,b) are ordered pairs of the
same integer

and
of the

fJ



b. is associative

c. distributive over addition.

(5) The product (d,d) (a,b) is an ordered
pair of the integer 0.

(6) The product (d,d+1) (a, b) and (a,b) are
ordered pairs of the same integer.

5. The "least" ordered pair of an integer is the
ordered pair having 0 for one of its members.

(a) Find the least ordered pair for each of the
integers

(1) 7 (2) -7 (3) 0

(b) For each of the following ordered pairs,
find the integer containing it

(1) (0,12) (2) (12,0) (3) (38,47)

(c) Compute each of the following, then state
the least ordered pair that is in the same
integer.

(1) (0,7) + (9,0) (6) (7,7) (9,0)

(2) (0,7) - (9,0) (7) (0,1)-(9,0)

(-..) (0,7) (0,9) (8) (1,0) (9,0)

(4) (0,7) (9,0) (9) (1,0) (0,1)

(5) (7,7) + (9,0)

6.8 Dilations and Multiplication of Integers
Let us begin with a line in which one fixed point

is labeled "C". Consider the following mapping of the
line onto itself: The mapping assigns point C to itself,
but to any other point P on the line it assigns the point
P' such that P is the midpoint of segment cps . This
mapping is illustrated by the arrow diagram

a' a

For this mapping, the distance cps is twice the dis-
tance CP. Thus the mapping corresponds to

n 2n

which takes whole numbers into their doubles. If we
denote this mapping, which doubles distances from C,
by "2" (read: 2 prime), we have

2 p

2': C C
2 I Q

In a similar manner we define 3' to be the mapping
that takes any point P into a point that is three times
as far from C and on the same side of C as P. In gener-
al, if d is a whole number, "d'" will denote the map-
ping that takes any point P into a point that is d times
as far from C and on the same side of C as P. Such
mapping is called a dilation. Summarizing, we have:

If dilation d' : , then CP' = d CP

and P is between C and Ps , d'
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Question: Does d' mop the line onto itself?

Let us now define another mapping that also
leaves C fixed. This mapping takes any point R to a
point on the other side of C, the same distance from C.

Since this mapping reflects R in C, it is called "the re-
flection in C" and isdenoted "-1' " (read: negative
one prime). Such a mapping is also called a symmetry
in point C because points R and R' are located sym-
metrically on either side of C. However, in this chapter
we shall continue to call such a mapping a reflection in
a point.

-1'; R R'

-1' : R = ---R
' C

Let us now see what happens when we compose -1'
with 2' . Such maps leave C fixed, so let point P be
different from Point C. Locate points Q, R, and S so
that RS = SC = CP = PQ.

R0

Then 2' : P--Q and -1' : The compo-

sition of -1' with 2' takes P into R via Q. Similarly,
the composition of 2' with -1 ' takes P into R via S.

We shall see that composition of such mappings is
analogous to multiplication of integers. Anticipating
this analogy, let us agree to express this composition
by use of the multiplication sign "x". We may now
write

2' x
x2 :

P R.

P R.

We shall use "-2" as an abbreviation for "2' x
-1". Similarly, -3' =3' x -1' and -4' = 4' x
We shall also say that -2' "contains a reflection".
'3',-4 5 I also are said to contain a reflec-
tion.

Let us look at a few more examples.

K R S C PO T

"3 "2 "1 0 1 2 3 4

Example 1: 3': P or 1 3

-3' : P--K or -31

Example 2: 3' S--- or: +K

-3' or -1--03:

Example 3: (-2' x 2') : S--1- or -1--
because -2': S0q) and
2' Q
Note: that -4' : S--L or -1--o



so that the mappings -2' x 2' and
-4' have the same effect on S.

Example 4: Let us now use only the integer
names for the points.

(2' 3') : 1---. 6, -4 -24---
6' : 1---,- 6, -4 -24---

(-2' x 3' ): 1---*--6, -4 --.- 24

-6' : 1--:-6, -4 24---e
L HP

What do these examples suggest?
It will be convenient to define themagnitude of

such a dilation mapping. The magnitude of the mapping
d', where "d" names any integer, is the same as the
absolute valueof d, that is Idl. We shall use the same
vertical bar notation to denote magnitude. Thus, Id'I

= Id I. In particular

13/1= 13 1- 3

1-3' 1 = I -31 =3

Let r and s be any integers; r' and s' their cor-
responding mappings. Then the composite mapping r' x
s' has the following property:

1r' xs'l= ir'1. Is'1
because s' enlarges by a factor of 1 s'l and r' enlarg-
es the enlargement by a factor of le I. The net result
is to enlarge by a factor of I r . ' I s ' I.

If neither r' nor s' contains a reflection, the com-
position mapping r' x s' contains no reflection. If both
r' and s' contain reflections, then r' x s' contains no
reflection. If either r' or s' (but not both) has a re-
flection, then r' X s' contains a reflection. Let us say
that r` and s' have the same direction if either both

contain reflections or neither contains a reflection.
Then r' and s' are the same mapping if they have the

some direction and magnitude.
Let us agree to call every mapping d', where d is

any integer, a dilation. The set of dilations together
with the operation "x" expressing compositions de-

termine a mathematical system wi:ich we shall denote

by "(D', x)".
To compute the composition of two mappings will

mean to express the composite mapping as a mapping
without an indicated composition. Thus, the computed

mapping for -3' x -2' is 6' and we shall write -3' x
-2' = 6' because -3' X .'21 and 6' have the same
direction and magnitude.

The resemblance between (Z, ) and (D', x)
should be quite apparent by now. In the first place,
there is a one-to-one correspondence between the in-
tegers Z and the dilations D'. Moreover,

composition of dilations strongly suggests how we

should multiply integers.

6.9 Exercise_ s
Use the integer names for points of our number
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line and let our dilations be with respect to 0.

1. Into what point does 7' map each of the follow-
in g:

(a) 6 (b) -6 (c) 1 (d) 0

2. Into what point does-7' map each of the fol-
lowing:
(a) 6 (b) '6 (c) 1 (d) 0

3. Into what point does 2' x -3' map each of the

following:
(a) 1 (b) -1

4. Compute:

(c) 0 (d) 10 (e) -10

(a) -7' X ''''6' (g) -35' x -35'

(b) 7' x -6' (h) 45' x 45'

(c)6,x -71 (i)(2' x -3') x4'

(d) -6' x 7' (i ) 2' x (-3' x4')
(e) -15' x-15' (k) (-17' x 25') x 4'

(f) 25' x 25' (I) -17' x (25' x 4')

*5. Let r', s', t' be any dilations. Prove that com-

position of dilations
(a) is commutative: r' x s' = s' x r'
(b) is associative: (r' x s') x t' = r' X (s' x t')

(c) has 1' as an identity.

6. What can you say about the dilation 0 '?

6.10 Another Isomorphism
We would like to have the positive integers, to-

gether with zero, behave just like the whole numbers
under multiplication. In fact, it is for this reason that

we are using the same symbols. "2" names either a
whole number or a positive integer--we can tell which

only from context. Composition of dilations that do not
have reflections behaves exactly like multiplication of
whole numbers. For this reason wemay define the prod-

uct of any pair of integers r and s by using the informa-
tion we have for (D', x).

In order to define r . s we need to know its (+-
solute value and its direction. Let Ir sl = ir' X s'
= le I X Is' 1 and let t'.e direction of ro s be negative
if either r' or s' (but not both) have a reflection;
otherwise, let the direction of r s be positive. With

this definition, (Z, ) and (D',x) are isomorphic.

r s 4111411%

r

rI x s I

6.11 Multiplication through Distributivi
In section 6.1 we said that it would be nice if

(Z,+, ) retained the distinctive properties of (W,+, ).
In order to extend the isomorphism between (W, +) and

the non-negative integers, we assumed that the product
of two positive integers is a positive integer. Then by

observing patterns of multiplication, we were led to
definitions in the cases where one or both factors are

negative or zero. We found that these definitions did



preserve the desired properties.
Are there other possible ways to define multipli-

cation in Z and still retain those properties? Could
such alternative definitions lead to results differing
from those we have already obtained. For example,
could rO = r for every integer r ? Could the product of
two negative integers turn out to be negative integer?

(For instance, could -7 13 = 91?)
In this section we shall show that if "" is as-

sumed to be a commutative, associative, and distribu-
tive operation, the customary rules for computing prod-

ucts are actually forced on us.
Let us begin by stating a basic assumption which

we have been using over and over. To illustrate this
assumption, which we shall soon name, consider the

easy computation

(2 + 3) + 4 = 5 + 4

=9.

The symbols "2 + 3" and "5" both name the same
number so we feel free to replace "2 + 3" by "5". In
the last step we replaced "5 + 4" by "9" because

they both name the same number.
In mathematics we frequently replace one name

for an object by another name for the same object, as-
suming that this kind of replacement is permitted. This
assumption can be stated precisely as follows: The
mathematical meaning of an expression is not changed

if in this expression one name of an object is replaced
by another name for the same object. This assumption
will be called the Replacement Assumption or simply
Replacement. We shall be making frequent use of this
assumption without mentioning it.

The second assumption is that multiplication is
an operation on Z. For each pair of integers r and
.s., there is a unique integer r s.

The third assumption is that multiplication of in-
tegers is commutative. For every pair of integers r
and s, rs = sr.

The fourth assumption is that multiplication of in-
tegers is associative. For every triple of integers r, s,
and t, r(st) = (rs)t.

The fifth assumption is that multiplication is dis-
tributive over addition. For all integers r, s, and .t.

r (s + t) = rs + rt.
The sixth and final assumption is that the product

of a pair of positive integers is a positive integer and
for every pair of integers r_ and s, the absolute value

of r s is equal to the product of the absolute values of

r and s.
These six assumptions may be summarized as

follows:

A.1 Replacement.
A.2 Multiplication is an operation.
A.3 Commutativity.
A.4 Associativity.
A.5 Distributivity.
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A.6 The product of two positive integers is a
positive integer.

We are now ready to prove some further useful proper-
ties of the system (2, +, ):

Ti: Cancellation For Addition
We will prove that for integers, whenever x + b =

y + b it follows that x = y.
If x+b=y +b then it follows that (x + b) + b =

(y + b) + b because we are adding b to the same
number, only using different names x + b and y + b for

this number. Using the associative property for addi-

tion of integers and Replacement, this equality may be

written as

x + (b + I)) =y +(b + b)

But b + b = 0. So, because of Replacement, we
now write

x +0 =y +0.

0 is the additive identity for integers, so x +0 = x and

y + 0 = y. Again using Replacement, we obtain x = y.
We have thus shown that if x + b = y + b, then x = y. It
also follows readily that if b + x = b + y, then x = y.
We shall refer to these generalizations as Cancellation

for Addition.

T2: Each Integer Has Exactly One Additive Inverse
Suppose the integer r had two inverses, say s and

t. Then by definition of additive inverse,

s + r = 0 and t + r = O.

But if s + r and t + r are both 0, we have s + r = t + r.
From cancellation for addition we have

s = t.

Hence, we can have but one additive inverse of any in-

teger r. We shall usually denote it by "r".
We are now ready to give convincing arguments for

certain rules for computing products of integers. We
shall begin with a rule, which we previously adopted

as a definition.

T3: For every integer r, r 0 = 0 r = 0
We already know that r = r + 0.

r-r= rr

r(r +0) =rr

(r. r) + (r 0) = r r
(r r) + (r - 0) r ( r . r) +0

rO =0
Or =rO
Or =0

Multiplication is an opera-
tion

Replacement of "r" by
"r + 0"
Di stri buti vity

0 is the additive identity

Cancellation for Addition

Commutativity

Replacement

This generalization or theorem says that the prod-

uct of two integers is zero whenever one of the integers



(or both) is zero. You recall that in Section 6.6 we de-
fined r 0 = 0 r = 0. T3 shows that if we make the de-
sired assumptions about " ", there is really no
choice in the definition of r 0: It must be zero! Those
desired assumptions place further restrictions on the
rules for computing products. These restrictions are
demonstrated in T4 and T5.

T4: For every pair of integers r and s, -(r. s) = (r.-s)
and -(r s) = (-r s).
This says that the additive inverse of the product

of a pair of integers is the product of either one of the
integers and the additive inverse of the other.

For example,
-(2.3) = (-2.3)

and -(2.3) = (2- -3).
By our assumption on products of positive integers,
2.3 = 6. Therefore, this rule tells us that -2.3 =
2 - -3 = -6.

A proof for rule T4 will now be given: We already
know that

r(s + -s) = (rs) + (r -s)

because of distributivity. But s + -s = 0, so the left
number becomes r- 0 which we know from T3 is 0.
Therefore,

0 = (rs) + (r -s)

Whenever a sum of two integers is 0, the integers are
additive inverses of each other. Hence,

-(r s) = (r -s) (and also (rs) = -(r. -s) ).

This completes the proof that the additive inverse of
a product of two integers is the product of either in-
teger and the additive inverse of the other.

From this generalization we can conclude further
that

-(r -s)= (-r -s) (1)

and lir s)) = (-r -s). (2)

On the left side of this last equation we have the ad-
ditive inverse of the additive inverse of (r. s). The ad-
ditive inverse of the additive inverse of an integer is
the integer itself. We can see this from the following
equation. If

t + -t = 0,

then t and -t are additive inverses of the other, so
that t = "-O. Making use of this fact and (2) above,
we obtain

r s = -r -s.
This proves the following important generalization.

T5: The product of a pair of integers is the same as
the product of their additive inverses.

If r and s are negative integers, it follows that
their product is the same as the product of their in-

verses, or a positive integer. For example,

-7 - -4 = 7.4 =28.

6.12 Exercises
,

*1. Using the methods of section 6.11 prove the
fallowing:

(a) If x + 3 = y + 3 then x = y for integers

(b) 3 has but one additive inverse.

(c) 3 0 = 0

(d) 3 -2 = -(3 2)

(e) (-3 -2) = 6

(f) (-1) r = -r for every integer r.

2, Construct a flow chart for computing the prod-
uct of a pair of integers rt s.

3. Compute eack of the following if r = -4, s = -7,
t = 9.

(a) r + s (g) (rs) t (m) r - t
(b) r +-s (h) (rt) s (n) -(r - t)

(c) r - s (i ) (st) r (o) -r + t
(d) r (s+t) (j) r2 (p) -2r + -3t
(e) r (s - t) (k) r3 (q) r2+ s2

(f) (rs) - (rt) (I) r2 s (r ) r2 - s2

4. Find the solution set from the set of integers
for each of the following conditions.
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(a) x2 = 4 (f) (x + 2)2 = 9

(b) Ix' =2 (g) (y 3)2.9
(c) y2 = -4 (h) (x + 2) (x - 3) = 0

(d) x2 < 4 (i ) (x + 2)2 < 5

(e) lx I < 2 (I ) (Y-2)2 < 5
(k) x2 + 3x = 0

5. Picture the solution set for each of the exercis-
es in 4 by using a number line and enlarging
dots. Thus, if your solution set is { -1, 2) its
picture or graph is

--2 -1 0 1 2 3
*6. Prove that if the product of a pair of integers is

zero, at least oneof the factors is zero. (Hint:
Consider the possible directions for the pair).

*7. Prove that if r + r = 0, then r =0.

*8. Prove that: (a) If t /10 and rt = st, then r = s.
(Cancellation for Multiplication)

(b) For all integers!, 1., and t,

(1) r(s - t) = rs - rt.
(2) (s + t)r = sr + tr.

(3) (s - t)r = sr - tr.



*9. Compute: (r, s, t are integers)

(a) (r +1) (r+1) (f) (r_1) (r-1) (k) (r+1) (r-1)

(b) (s+2) (s+2) (g) (s-2) (s-2) (I) (s+2) (s-2)

(c) (t+3) (t+3) (h) (t-3) (t_3) (m)(t+3) (t-3)

(d) (r+1) (r+2) (i ) (r-1) (r-2) (n) (r+1) (r-2)

(e) (s+2)(s+3) (s-2)(s-3) (o) (s+3) (s_3)

*10. If r, s, t are any integers and r < s, prove:

(a) 2r < 2s

(b) 3r < 3s

(c) rt < st if 0 < t

(d) rt > st if t < 0

(e) r2 > 0 if r'0
(f)r+t<s+t

11. Write an equation for each of these sentences

and then find all the integer solutions.

(a) the double of an integer is -12.

(b) the double of an integer is 3 less than the

integer.

(c) the square of an integer is less than 20 but

greater than 4.

(d) the sum of an integer and its successor is

-7.
(e) the product of an integer and its successor

is 42.

12. Make two strips with scales as shown:

12 14 IS

I I I

I
16

(a) Try to find a way of using your strips to

compute products. Draw a picture showing

the position of your strips for the products

(1) 2 x2

(2) 2 x 4

(3) 2 x8

(4) 4 x 2

(5) 4 x 4

(b) Notice that the scales do not show all the

whole numbers. Should the exact midpoint

between the markings for 2 and 4 be 3? If

not, should it be more or less? Why do you

think so? The strips you have constructed

make a crude slide rule for multiplication.

13. The figure shown is a nomogram for multiplica-

tion. The figure shows how to compute 2 x 4.

Draw lines to show the computation for:
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(a) 2 x2 (e) 4 x4 (i ) x

(b)2 x4 (f)4 x8 (j)8x

(c) 2 x8 (g) 8 x8 (k) x 11-

(d) 2 x 16 (h) x 8 (I) 4. x t1,1.

14. (a) If a hot rod moves at a fixed speed of 4

feet per second to the right, what interpre-

tation would you give to a speed of -4

feet per second?

(b) If the hot rod starts at 0 on the number line

(measured in units of 1 foot) and has a

speed of 4 feet per second (fps), where will
the hot rod be in 3 seconds? If we think of

the place on the number line the hot rod is

at the moment, how might we interpret the

instant -3 seconds?

C51 Hot Rod

-4 -2 2 4

(c) Let us agree to interpret 4 x 3 as a product

that locates the hot rod on the number line if

it starts of 0, where 4 is the speed in fps,

and 3 is the number of seconds from the

time it was at 0. Interpret the following prod-

ucts and see whether your interpretations is

consistent with our rules for multiplying

integers:

(1) 4 x
(2) -4 x 2

(3) '4 x -2

15. We have already noted the following:

7 + = 7 - 2

7--2=7+2

and in general, that for any integers r and s



*

+ --s = r - s

- -s = r + s

We shall now observe a convention that is fol-
lowed universally, in view of the last two
equalities. This will remove the need for using
the elevated minus sign. We will use "-s" to
mean -s, and read it as "additive inverse of
s". When we write "r-s" we may mean either
the difference of r and s or the sum of r and
-s because either interpretation gives the same
result. Assuming that we are dealing with in-
tegers, compute:

(a) 7 -5 (f) (-41) x (-39)

(b) 5 - 7 (g) -3 + (-2 x 3)

(c) -5 -7 (h) (-7 x6) +( -7 x -5)

(d) 21 x (-19) (i) (-7 x 6) + (-7 x -5)
(e) -31 x (29)

16. In (Z7, ) find -2, -3, 6. Show that:

(a) -2 3 = -6 (b) 2 -3 = -6
(c) -2 -3 =6

17. Using the distributive property of multiplica-
tion over addition, prove: (x is an integer)

(a) 2x + 3x = 5x (d) 2x - 5x = -3x

(b) 2x + x = 3x (e) 5x - x = 4x

(c) 5x - 2x = 3x (f) x - 5x = -4x

18. Solve for x from among the integers:

(a) 2x +3x= 20

(b) 2x+3x = -20

(c) 3x =20 +2x

(d) 3x=20- 2x

(e) 3x =2x - 20

6.13 Summary
1. In this chapter we developed and studied mul-

tiplication of integers from various points of
view. The definition of the multiplication oper-
ation was motivated by the desire to extend
the isomorphism between (W, +) and (Z, +), to
maintain patterns previously known to hold for
multiplication in W, and to preserve certain
nice properties of (W, +, ). Multiplication re-
ceived further interpretation as a composition
of dilation mappings. Another development (in
the exercises) used ordered pairs to define
the product of integers.

2. For integers r and s, the prod' .3 r s is

(1) 0 if r or s is zero:

(2) positive if both r and s are positive or
both r and s are negative:

(f) 2x =3)(420

(g) 20=2x - 3x

(h) 12x +x1 < 7

(i) 12x+31+1x-11< 10
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(3) negative if one is positive and the other
negative.

Furthermore, the absolute value of r s is 11.1 -

is 1.

3. In section 6.11 we showed that if multiplica-
tion is assumed to be commutative, associative,
and distributive, then the following must be
properties of (Z, +, ):

Ti: Cancellation for addition.

T2: Each integer has exactly one addi-
tive inverse

T3: The product of a pair of integers is
0 whenever one of the factors is 0.
(r 0 = 0 - r = 0 for all integers r)

T4: The additive inverse of the prod-
uct of two integers is the product
of either integer and the additive
inverse of the other. (For all in-
tegers r ..1, -(r s) = (-r s), -
(r s) = (r -s).

T5: The product of a pair of integers is
the same as the product of their ad-
ditive inverses.

In proving these theorems, we used the Replacement
Assumption and the assumption that the product of two
positive integers is a positive integer.

6.14 Review Exercises
1. Compute:

(a) 9+-7

(b) 9 - -7
(c) -9 - -7

(d) (9) (-7)
(e) 9 (-7)
(f) (-12)2

(9) 1-23 9 i

(h) 1-231 191

(i ) -47 - (17 - 25)

(j ) (39 x -27) -(39 x -17)

(k) (29 x -7) +(29x13)

(I) 472 - 482

2. Find the solution set from the set of integers.

(a) x2 = 9

(b) y2 - 1 =0

(c) (-2) x = 8

(d) r2 < 5

(e) x2 = -1

(f) x(x + 2) = 0

(g) n(n + 1) = 55

(h) (x + 1)2 = 4

(i)1r31< 10

(i) s2 = -s
3. Picture on a number line the solution set for

each exercise in 2.

4. Answer TRUE (T) or FALSE (F)

(a) Multiplication of integers is both commuta-
tive and associative.

(b) Multiplication of integers distributes over
both addition ana subtraction.



(c) Multiplication of integers by -2 always
gives a smaller integer.

(d) Subtraction of integers is associative.

(e) If a product of integers is 0, one of its
factors must be 0.

(f) If a product of integers is negative, then at
least one of the factors must be negative.

(g) If r, s, t are integers and (rs)t < 0 then r or
s or t must be positive.

(h) (Z, ) is isomorphic to (W, -).

(i ) (Z, ) is isomorphic to (D', x).
(j ) If oneof the factors of a product of integers

is 0 then the product is 0.

(k) In (Z6, ) if a product is 0 then one of the

factors must be 0.

(I) (-r s) = (r -s)

(m)-r+s=s-r
(n)-r+s=r-s

+ s) -r - s
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CHAPTER 7

LATTICE POINTS IN THE PLANE

AND MAPPINGS ON Z X Z

7.1 Points and Ordered Pairs

In a certain North American city the city planners
wanted to devise a numbering system for naming
streets and avenues. They wanted a system that would
make it easy for a visitor to find his way to places in
the city and also a system that would allow them to
add new streets and avenues without changing the
system.

The avenues were to be parallel to one another
and so were the streets. Each intersection then could
(hopefully) be named by an ordered pair of natural num-
bers by agreeing that the avenue should be named first.

The planners selected an avenue and street that
intersected in the city center. They named the avenue,
"100 avenue", and the street, "100 street". In this
way they felt that there would be sufficient street and
avenue numbers on either side of the center of town to
accommodate growth.

Question: What problem might arise with the sys-
tem of naming avenues and streets, if
the city should expand more than 99
blocks from the city center in the direc-
tion of decreasing street numbers or de-
creasing avenue numbers?

If the city planners could have persuaded the resi-
dents to accept integers as names for avenues and
streets, the problem would be solved, for the set of in-
tegers has no least or greatest member. No matter how

many new streets might be built at either end of the
city there would always be enough names without
changing the system. Figure 7.1 illustrates such a
system:

The point labeled "(0,0)" in Figure 7.1 represents
the intersection of zero avenue and zero street. This
is "city center." We can name each intersection repre-
sented in Figure 7.1 with an ordered pair of integers.
The first component of the pair names the avenue and
the second the street. For example, intersection A is
named (-2,2).

7.2 Exercises
1. Give the ordered pair of integers for each of

the following intersections represented in Fig-
ure 7.1. In each case list the avenue first and
then the street:

(a) K (b) H (c) G
(9) C(e) E (f) B

(d) F
(h) D
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3

2

0

-1

-2

-3

St . IC i

St e A

St-4,--.

St . F

41.

(0,0) 0

St
E

St H

St

ow

-3 -2
Ave. ye. Ave. Ave.

Figure 7.1

Ave. Ave. Ave.

2. In traveling from intersection F to intersection
C by the shortest route through D:

(a) How many blocks would you travel?

(b) Name the ordered pair for each intersection
on the route.

(c) How could you use the fact that F is on 2
avenue and D is on 3 avenue to find the dis-
tance in blocks from F to D, considering
that they are on the same street?

(d) Since D and C are on the same avenue, how
can you use the fact that D is on 0 street
and C is on 2 street to find the distance
D to C in blocks?

3. In general:

(a) How can you find the distance between two
intersections on the same street?



(b) How can you find the distance between two
intersections on the same avenue?

7.3 Some Important Properties of Points, Lines and
Planes

The street plan illustrated in Figure 7.1 suggests
many geometric ideas. It suggests two sets of equally
spaced parallel lines so arranged that each line in one
set intersects each line in the other. It also suggests
a correspondence between the intersect points and
ordered pairs of integers. This set of intersection
points will be called a set of lattice points. The set
of all ordered pairs of integers will be called Z X Z
(read: Z cross Z).

The following properties of points and lines are
useful in establishing a correspondence between Z X Z
and a set of lattice points in a plane.

(1) Through two points, P and Q, (P /IQ)
there is exactly one line.

P

Q I
Figure 7.2

(2) Two lines, r and s, are called intersect-
ing lines, if they have exactly one point
in common.

Figure 7.3

(3) Two lines are parallel if they are the
same line or if they are in the same plane
and have no points in common.

k

n

111411

Figure 7.4

(4) Two lines in the same plane are either
parallel or they are intersecting lines.

(5) Through a point P, there is exactly one
line parallel to a given line m.
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These properties are quite simple, but they are
basic geometric properties which will be applied many
times. We apply them first to the following problems.

In Figure 7.6, OA and OB are intersecting lines.
X is a point on't5K (not the same as 0) and Y is a
point on OB (not the same as 0). Given these condi-
tions on 0, X, and Y, is there a unique point Q, so
that OYQX is a parallelogram? If the answer is yes,
then we have defined an operation on pairs of points
on OA and OB respectively. If we designate the oper-
ation by *, then X*Y = Q.

Figure 7.6

/i
D IQ.......... .......................................................

/p
I

XIIIII

7.4 Exercises

1. Use the picture in Figure 7.6 as a reference
while answering the following questions. The
answers to these questions may help you to
justify the fact that * is an operation.

(a) Suppose that XC is parallel to OB and
YD is parallel to OA. What kind of figure
is OYQX?

(b) Are there any other lines through X which
are parallel to OB? Are there any other
lines through Y which are parallel to OA?

(c) What is the reason that XC and YO must
intersect. In other words, why can't XC
and YD be parallel?



(d) If XC and YD intersect in Q, do they inter-

. sect in any other point?

2. In Exercise 1 you answered questions that show
that, for the pair of points X, Y (as specified),
there is one and only one Q such that X*Y = Q.
Now the question is, "Given a point Q (not on

OA or VT) is there one and only one pair of
points X, Y such that X*Y = Q?"

Refer to Figure 7.7 and the properties in
7.3 in answering the following questions :clot-

ed to the one above.

(a) Sue pose that r contains Q and is parallel to
OA. Is r the only line through Q which is
parallel to OA? What property justifies your
answer?

(b) St.....vose that s contains Q and is parallel to
OB. Is s the only parallel toOB which con-
tains Q? Justify your answer.

(c) Does r intersect0T? If r did not intersect
what two lines through 0 would both be

parallel to r? What property would this con-

tradict?

(d) Does s intersect OA? Justify your answer.

(e) Can r intersect OB in more than one point?

(f) Can s intersect OA in more than one point?

(g) What conclusion can you draw from your

answers to the preceding questions about
X,Y,Q and the operation * ?

3. Use properties 1,2, and 3 of section 7.3 to give
an argument in favor of property 4.

4. In Figure 7.3 what is the intersection point of

r and s? Suppose r and s had a second point of
intersection. How can you use property 1 to

show that r and s are then the same line?

5. In Figure 7.5, a is a line which contains P and
is parallel to m. If b is another line which con-

tains P and b is not the same line as a, what
property can you use to show that b is not paral-

lel to rn?
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7.5 Assignment of Ordered Pairs of Integers to Lat-
tice Points

In Figure 7.1 you have an example of an assign-

ment of ordered pairs of integers to intersections of
avenues and streets. This physical example suggests
many geometric ideas and might help to keep your
thinking straight about the mechanics of assigning
numbers to points. In this section we will use the

parallelogram operation, * and the idea of parallel
projection to develop ideas about the correspondence

between Z X Z and an infinite set of lattice points.
Refer to Figure 7.8 as we illustrate and describe

the assignment of an ordered pair of integers to one

particular lattice point. Notice that inters have been
assigned to equally spaced points on 8A and on 06
with zero assigned to 8 in both assignments. We will

refer to these points by letter names, by the assigned

integers, or simply as points.
Imagine a set of lines each of which is parallel to

86 and intersects eA in a point which is assigned an
integer. Also imagine a set of hies each of which is
parallel to BA and intersect incuoint which is
assigned an integer. Since GA and OB intersect, each
line in the set parallel to CIA intersects each line in

the set parallel to BB. These intersections are the
lattice points to which we will assign ordered pairs of
integers.

Figure 7.8

t
4

3

OS 2

-5 -4 3 -2
OS

1

K

(43"

0
-1 0

-1

-2

."0

1

A
2 3 4 3

You will see in Figure 7.8 that we have assigned
the ordered pair (4,3) to point K. We will call 4 the
first coordinate of K and 3 the second coordinate of K.

BK is parallel to 9A andKA is parallel to 96.
What kind of a geometric figure is AMA?

Note that A*B = K. What integer has been assign-

ed to A? to B? How can you use the operation to as-

sign coordinates to lattice oints in Figure 8 if the

points are not on OA or GB? What are the coordinates

or R? 5? T?
Point K obtained its first coordinate from AA and

its second coordinate from 8B. We will call the

first axis, or more simply, the x-axis in our coordinate

system and GB the second axis or y-axis. "(x,Y)"

° J0.4,/,'. .0,00 2.0:, f%;



will be used to represent the coordinates of any point
in the set of lattice points, or the point itself.

You can think of the lattice points as being ar-
ranged in "rows" and "columns", the "rows" and
"columns" being sets of colinear points, i.e. points
in the same line. Assign the same first coordinate to
each point in the same "column", and assign the same
second coordinate to each point in the same "row".
Then when you assign an integer to a lattice point, X,
on the x.axis, you assign it as the first coordinate of
every lattice point in the column containing X. Also
when you assign an integer to a lattice point, Y, on
the y-axis you assign it as the second coordinate of
every point in the row containing Y.

Question: What is the first coordinate of every
lattice point on KA?

What is the second coordinateof every
lattice point on BK?

The method of assigning the same first coordinate
to each lattice point in a column and the same second
coordinate to each lattice point in a row is illustrated
in Figure 7.9.

I III
( -2,2) (02)

ilx ilx
r4,2) ( -3,2) %-2,21 k-1,2/ 02/ t1,2) (2,2) t3,2)

K 2

1

H
x axis

- - -2 -
-

y axis

Figure 7.9

In Figure 7.9 the lattice points on line r have been

mapped onto the integers assigned to lattice points on
the x-axis. This is an illustration of parallel projection
of a set of points on a first line onto a set of points on
a second line which is parallel to the first. The idea of
parallel projection plays a role in each of themethods
that we used to assign coordinates to lattice points.
Note that point K is the intersection of line r with the

y-axis and that point K was assigned the integer 2.

Question: What is the second coordinate of each
lattice point on line r?

What is the first coordinate of each
point on 4.F6?

What is the first coordinate of each
point on HJ?
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Figure 7.10 illustrates some of the terminology
that we will use in the following sections in connection
with coordinates.

second quadrant

1:21,01,20

( -. +)

ir
first quadrant (+,+)

Ito

third quadrant

GC

y axis

fourth quadrant (4,)

Figure 7.10

A
x ex s

S.

Figure 7.11, represents a ray. Thera includes E,

the endpoint, and all the points of line-EF on the "F
side" of E. (represented by the solid part of the sketch)

.1111m. as ea pus

Figure 7.11

7.6 Exercises
1. (a) Locate IV in Figure 7.10. Zero has been

assigned to point 0. How can you describe
the integers that have been assigned to the

other lattice points on OA?

Note: IT is called, "the positive x-axis."
(b) What would you call OD? OB? OC?

(c) Locate the part of Figure 7.10 labeled "first



quadrant," The points in the first quadrant
have coordinates that are both positive. For
point P in the first quadrant, x > 0 and y >
0. What con you say about point Q in this
respect? point R? point S?

2. We can say that OA and are the boundar-
ies of the first quadrant. What are the bound-
aries of the second quadrant? the third quad-
rant? the fourth quadrant?

Figure 7.12 illustrates an important fact
about coordinates of points on a line parallel to
one of the axes.

y axis

will

OM (-1A)

6 4;2) (-272)

Figure 7.12

0

(3,3)

(3,2)

(3,1)0
(3,0) A As.

x axis
(30)
(372)

(3;3)
P

3. PQ is parallel to the y-axis. What do you notice
about the first coordinates of points on PQ?

4. RS is parallel to the x-axis. What do you notice
about the second coordinates of points on the
line RS?

5. What two generalizations can you make about
lines parallel to one of the axes?

6. What port of our procedure for assigning co-
ordinates built this property into our system?

7:7 Summary of Assignment of Coordinates

The purpose of the sections on assignment of co-
ordinates is:

(1) To give you some idea of the associa-
tion of pairs of integers with lattice

itm

(2) To give you some idea of the geometric
properties upon which this association
depends:

(3) To give you a working knowledge of the
use of coordinates to aid you in the sub.
sequent study of both algebra and geom-
etry.
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A summary of some of the main features of the as-
signment of ordered pairs of integers to lattice points
follows:

(1) We start with a pair of intersecting lines,
AO and OB, called axes;

(2) We assume that there is a 1 1 corres-
pondence between the set of integers
and a set of equally spaced points on
each axis, with zero assigned to the in-
tersection 0;

(3) Through each point on 0r to which an
integer is assigned, there is exactly one
line parallel to rd, and through each
point on 0g, to which on integer is as-
signed, there is exactly one line parallel
to 0g;

(4) The set of lattice points is precisely the
set of intersections of lines, one of
which is parallel to 15-4 and the other to
OB as described in (3). Each such pair
of lines intersects in exactly one lattice
point;

(5) On any line parallel to OB (including OB),
as described above, assign to each at
tice point the integer for the point in
which it intersects OA. Call this integer
the first coordinateof these lattice points.

(6) On any line parallel to OA (including Off'),
as described above, assign to each lat-
tice point the integer for the point in
which it intersects OB. Call this integer
the second coordinate of these lattice
points.

(7) Because two intersecting lines intersect
in exactly onepoint, and because through
any point there is exactly one line paral-
lel to a given line, the above assignment
of pairs of integers to lattice points is a
one-to-one correspondence.

7.8 Exercises
For the following exercises you will need some

lattice paper (perhaps your teacher will have a supply
dittoed), some colored pencils, and a ruler. The lat-
tice paper should have at least eleven rows of dots and
eleven columns of dots. Draw a line through a horizon-
tal row of dots for the x-axis and a line through a col-
umn of dots, for example as in Figure 10, for the y-axis.
Ordinary graph paper can also be used.

1. Draw a line with colored pencil through the sets
of points that a satisfy the following conditions.
Use a different color for each condition in
group and a different sheet of lattice paper for
each group:



Group 1: (a) The first coordinate is equal to the
second coordinate.

(b) The 1st coordinate is the additive inverse
of the second.

Group 2: (c) The sum of the coordinates of the point is
5.

(d) The sum of the coordinates is 3.

(e) The sum of the coordinates is 3.

(f) The sum of the coordinates is 5.

Group 3: (g) The first coordinate minus the second is 2.

(h) The first coordinate minus the second is
1.

Group 4: (i) The first coordinate equals 2.

(j) The first coordinate equals 2.

(k) The second coordinate equals 4.

(I) The second coordinate equals 4.

Group 5: (m) The absolute values of the coordinates
are equal.

2. For each condition listed in this exercise use
a different color to draw a closed curve enclos-
ing just those points, represented on your
graph or lattice paper, that satisfy the condi-
tion. e.g.

(a) The first coordinate is less than the second.

(b) The first coordinate is greater than the
second.

(c) The sum of the coordinates is greater than 5.

(d) The .sum of the coordinates is less than 5.

(e) The first coordinate is less than 2.

(f) The first coordinate is greater than 3.

(g) The second coordinate is less than 4.

(h) The second coordinate is greater than 3.

7.9 Conditions on Z X Z and their Graphs

The set of ordered pairs that satisfies any one of
the conditions in Exercise 1 or 2 in Section 7.3 is
called the solution set of the condition. For example,
the solution set of the condition "The sum of the co-
ordinates is five", would include

{(0,5), (1,4), (2,3), (3,2), (4,1), (5,0), 6,-1),
(7, -2) . (-1,6), (-2,7), (-3,8), ...
The set of lattice points associated with these
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ordered pairs is called the graph of the solution set,
or sometimes the graph of the condition. The graph of
the above solution set is represented in Figure 7.12
by the circled points in the lattice:

(411?

cp.42 1A(7,4)

. 00.3: . . otk-i
ei moorill

0
A (to)

13(2,1) C)(4:1)

Figure 7.13

Notice that in Figure 7.12 the graph of the condi-
tion "The first coordinate is 3 more than the second
coordinate" is displayed by enclosing the points in
squares. (Very often it is effective to display the
graphs of different conditions by using different colors
to enclose the points.)

Questions: Which point is enclosed by both a
circle and a square? Is 4+ 1 equal to
5? Is 4 1 equal to 3? Does (4,1)
satisfy both conditions?

Part of our study of mathematics is learning tc ex-
press mathematical ideas in the symbolism of mathe-
matics. You have previously used "x" to express the
first coordinate of a point and "y" to express the
second coordinate of a point.

Therefore, instead of writing "The sum of the co-
ordinates is 5", we can write "x + y = 5". Instead of
writing "The first coordinate is 3 more than the
second coordinate", we can write "x = y + 3". If we
are interested in the pair of numbers that satisfies
both of those conditions, we can write, "x + y = 5 and
x = y + 3". This new condition is made up of two con-
ditions connected by "and". The solution set is
{(4,1)} and the graph is a set containing only one
point. This point is called the intersection of the two
graphs and { (4,1)} is called the intersection of the two
solution sets. The sentences that we write to repre-
sent conditions areoften called "open sentences".

7.10 Exercises

1. Translate the following conditions to the form

used above, making use of the symbols "x",
le', is...,

(a) The first coordinate is equal to the second
coordinate. (Ans. x = y)



(b) The first coordinate is the additive inverse
of the second coordinate. (Ans. x = _y)

(c) The sum of the coordinates is three.

(d) The sum of the coordinates is -3.

(e) The sum of the coordinates is -5.

(f) The difference of the first and second co-
ordinates (in that order) is 2.

(g) The difference of the first and second co-
ordinates is -1.

(h) The first coordinate equals 2.

(i ) The first coordinate equals -2.

(j ) The second coordinate equals 4.

(k) The absolute valuesof the coordinates are
equal.

2. Draw the graphs for the open sentences you
wrote in Exercise 1.

3. Translate the following back into words: (in
terms of coordinates)

(a) x + 6 = y

(b) y - x = 3

(c) y = ix!

(d) y = x - 2

(e) y = lx - 3 I

(f) x =7

(g) Y = 1

4. Using ">" for "greater than" and "<" for
"less than", translate the sentences of Sec-
tion 7.7 Exercise 2 into mathematical symbols.

5. Translate the following into mathematical
symbols:

(a) The second coordinate is the product of 2
and the first coordinate.

(b) The first coordinate is the product of 2 and
the second coordinate.

(c) The second coordinate is the product of 3
and the first coordinate.

(d) The first coordinate is the product of 3 and
the second coordinate.

6. Describe the following conditions in words:

(a) y = 5x (c) y = x2 (e) y < 0 (g) x- y = 6

(b) = 5y (d) y = 0 (f) x > 0 (h) 2x = 3y.

7. For each of the conditions in Exercise 6, list
four membersof Z X Z that satisfy the condi-
tion. For example, (1,5), ( 10), (-1, -5) and
(0,0) are four members of e. X Z that satisfy 6

(a).
8. Use the same piece of lattice paper to graph

each of the following conditions. Use a differ-
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ent color for each condition to circle the points
that satisfy the condition.

(a) y =x (c) x = 2y (e) y =0

(b) y = 2x (d) x = 0

9. Whatis the intersection (common point) of the
graphs in Exercise 8? Which graph was includ-
ed in the x-axis? the y-axis? Which of the
graphs were contained in a line other than an
axis?

10. Translate the following into mathematical sym-

bols:

(a) The second coordinate is 1 more than twice
the first coordinate.

(b) The first coordinate is 5 less than 3 times
the second coordinate.

11. Describe the following conditions in words.

(a) y = x + 1 (c).y = x + 2

(b) y x - 1 (d) y = x - 2

12. For each condition in Exercise 11, draw a line
through the points that satisfy the condition.
Use the same piece of lattice paper for all
lines.

13. In what way were the four lines in Exercise 12
alike? List the coordinates of the points in
which the lines intersected the y-axis. Note
the similarity between these coordinates and
the conditions as expressed in Exercise 11.

7.11 Intersections and Unions of Solution Sets

All of the points satisfying the condition x > 0
are located on the same side of the y-axis. We will
designate this side of the y-axis by "A". The set of
points satisfying the condition y > 0 are located on
the same side of the x-axis. Call this set B.

Two conditions joined by a connective such as
"and" is one example of a compound condition. The

set of points which satisfy the compound condition,
"x > 0 and y > 0" is the set containing these

points that satisfy both "x > 0" and "y > 0". This
set is the intersection of A and B. A point is in the
intersection of two sets only when it is in both sets.
Figure 7.14 illustrates the relationship of sets A, B
and A intersection B (often written A fl B).

a
x oxis

y axis

0
0

0

0
O
O

000
000

Figure 7.14
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Points in A are in circles. (x > 0)

Points in B are in squares. (y > 0)

Points in A B are in circles and squares.
(x > 0 and y > 0)

Let C be the set of points for "x < 0".

Let D be the sot of points for "y < 0".

Illustrate C, D and CI D in a diagram such
as Figure 14,

Repeat the preceding instructions for A and
D: B and C.

Which quadrant contains A n B? Cn D?
Ail D? Bnc?
List the coordinates for two points in A fl B:
CID: MID: Bnc.

All of the points satisfying the condition "x = 0"
are on the y-axis. Call the set of all such points E.
The solution set of the compound condition "x > 0 or
x :. ( ' contains those "points" which satisfy either
"x . )" or "x = 0" or both. This set is the union of
A and E, written AU E. Figure 7.15 illustrates this
set relationship:

Figure 7.15

Points in

Points in

Points in
= 0)

A are enclosed by circles.(x> 0)

E are enclosed by squares. (x = 0)

AU E are enclosed. (x > 0 or x

A simpler notation for "x > 0 or x = 0" is:

"x > 0" and is read,

"x is greater than or equal to zero."

7.12 Exercises

I. Describe (in terms of the axes and quadrants)
the location of the points that satisfy the fol-
lowing conditions:

(a) y= 0 and x > 0. Ans. On the x-axis to the
right of the origin.

Ans. On the x-axis to the
left of the origin
end in the second
quadrant.

(b) y 2 0 and x < 0.
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(c) y < 0.

(d) y < 0 and x < O.

(e) Y < 0 or x < 0.
(f) x,?. 0 and x < 0.

2. In this exercise try to locate the points in the

graph of the compound conditions without first
graphing each simple condition separately. Do
all parts of this exercise on one sheet of lattice
paper.

(a) x > 0 and x = y.

(b) x < 0 and x = -y.

(c) (x > 0 and x = y) or (x < 0 and x = -y)

3. Follow the instructions of Exercise 2:

(a) x > -1 and y = x + 1.

(b) x < -1 and y = -(x + 1)

(c) (x > -1 and y = x + 1) or (x < -1 and y =
-(x + 1))

4. (a) (x .?.. 0 and y 2 0 p_i_Id x + y =5)

(b) (x < 0 gad y.?. Ormady - xr-5)

(c) (x 2 0 a n t i y 2 0 and x + y = 5) or (x
and y 2 0 and y - x = 5)

5. (a) (x .S 0 agsl y .<_ 0 gi_id x + y = -5)

(b) (x2 0 gad y 0 gull x - y = 5)

(c) (x 5_ 0 and y 5.. 0 nd x + y = -5) or (x,?,. 0
and y < 0 and x - y = 5)

6. (a) y .?. x and y .5. x + 3

(b) y 5_, x and y > x - 3

(c) (y2 x ar_id y < x 4- 3) or (y < x at_JA y > x - 3)

<0

7.13 Absolute Value Conditions

In chapters 4 and 6 you thought of the absolute
value of an integer as a whole number. This made it
possible to make use of the properties of the whole
numbers while developing properties of addition and

multiplication of integers. You learned in those chapters

that the set of whole numbers is isomorphic with re-
spect to "+" and " " to the set of non-negative in-
tegers. This means that they "behave" the same in
addition and multiplication. In working with conditions
involving absolute value in Z X Z where the solutions

are ordered pairs of integers, (x,y), we will think of
the absolute value of an integer as a non-negative in-

teger as defined by the statements below:

(a) The absolute value of zero is zero.

(b) The absolute value of a positive integer is
that positive integer.

(c) The absolute value of a negative integer is
the additive inverse of that negative integer.

This covers all possibilities since x = 0, x > 0
or x < 0, if x is an integer.

n



A more compact definition is:
f x, if x > 0

1-x, if x >0I xl=

For example:

If x = 5, Ix' = 5 since 5 > 0:

If x = 0, Ix1= 0 since 0=0:

If x = -3, Ix I = 3 since 3 < 0 and -(-3) =3.

Another example:

Suppose I xl = 3.

From the definition lx1= x or lxI= -x, therefore,
substituting 3 for Ix I, in the line above,

3 = x or 3 = -x.

You see that we started with Ix' = 3 and found
as a result the compound condition "x = 3 or
x = -3". The solution set of this condition is
the union of the solution sets of the two simple
conditions.

On a line this solution set is simply a pair
of points. In the set of lattice points, however,
a more interesting situation develops. In Fig-
ure 7.16 the points for which x = 3 or x = -3
are circled.

4

13 V m CI

CI

0
0
0 -II

. Ca0
0

0 0
-0- a 0 0 n 0 S 4""

C) 0
t

Figure 7.16

Furthermore, suppose ly I = 2, then y = 2 or y = -2.
In Figure 16 the points for which the second coordin-
ates are 2 or -2 are enclosed in squares. In what way

is the graph of Ix 1= 3 and ly 1= 2 indicated?

7.14 Exercises

1. What are the following?

(a) 1-71 (b) 1151 (01131 (d) 1-11 (e) 19991.

2. Graph the following on the same lattice.

(a) I xl = 4 (c) 1x1 = 4 and ly I =1.

(b) l y i = 1 (d) lx 1 = 4 or 1111= 1.

(e) Describe how the graphs in (c) and (d) are
determined by the graphs in (a) and (b).
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3. Draw the graph of y = 1x1. Remember that if

x > 0, y =x and if x < 0, y -x. x > 0 simply
states that the points are to the right of the
y-axis or on the y-axis. x < 0 states that the
points are to the left of the y -axis.

4. Draw the graph of y - + 11= 0. (1.e. Y =

ix + b

Hint:
x +1, if x.?. -1

lx + I = + 1), if x < -1

Also see Exercise 3 section 7.12.

5. Graph the following:

(a) y =2 ix,

(b)y =3 Ix'
(4 Y = -2 lx I

6. Graph the following:

(To the rightof the y-axis,
this becomes y = 2x: to the
left, y = -2x)

(a) y = Ix I + 1 (Why can you think of this
as the graph of y = Ix'
translated one space away
from the x-axis?)

(b)y = ixl - 2

7, Graph lx1 + ly1 = 5.

7.15 Lattice Point Games

1. The Game of Caricatures
It is interesting to see what happens to a
graph or picture when you change the angle at
which the x-axis and y-axis intersect. For ex-
ample see what happens to "square-head"
when you change the angle of the axes:

0

Figure 7.17



What do you think would happen to a circle if
you draw it on one grid and then transfer it to
another by connecting points with the same co-

.

ordinates?
Transfer the "man in the moon", pictured in

Figure 7.18, to another grid with the axes at a
considerably different angle, e.g. X. Use the
coordinates of points on the picture to make the

transfer.

y axis

a

it axis

Figure 7.18

Remember that when you find the second coor-
dinate you have to count the points along a
"slanted" line. Coordinates for the "man in the

moon":

Head: (-2,4) (2,2) (4, -2) (3, -4) (1, -4)
(-2,-2) (-4,2)

Eyes: (-2,2) (0,2)

Nose: (0,0)

Mouth: (-1,-1) (1, -2) (2,-1)

Left Ear: (-4,2) (-5,2) (-4,1)
Right Ear: (2,2) (3,2) (3,1)

To play the game of caricatures:

a) One student draws a picture on a grid of
his choosing and without showing the pic-

ture supplies only the coordinates of key
points in the picture.

b) The other students on self-made grids,
using any desired angle for the axes, plot
the coordinates on their own grid and
sketch in the picture.

2. Operational Checkers (Optional)

This game is played by two players on a finite
set of lattice points. For example:
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(0:2) (1,2) (2,2)

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)

Figure 7.19

You will need to use the arithmetic of (Z3, +) so
we will list the necessary facts: 0 + 0 =0: 0 + 1 = 1:

0 + 2 = 2: 1 +1 = 2: 1 + 2 = 0: 2 + 2 = 1: and the com-

mutative property will provide the other basic facts.
1) One player has red checkers and the oth-

er has black checkers. A coin is tossed
to determine who starts.

2) The first player places a checker on any

point that he wishes:

3) The second player may then place a check-

er on any uncovered point and another
point with coordinates obtained by adding
the corresponding coordinates of the last
two points covered. The addition to be
used is that for (Z3, +).

4) On each subsequent play, if the players
opponent has just placed a checker on
(c,d), then the player may not only cover
any uncovered point (a, b) but also (a + c,

b + d). If " oint is already covered by

his oppu...air, the player replaces it with

one of his own. For example, if one play-
er has just covered (2,1), the other play-

er may cover (2,2) and also (2 + 2, 1 + 2)
which is (1,0).

5) The game ends when all points ore cov-
ered. The winner is the player with the
most points covered. As you play the
game you will see that it involves several
interesting strategies.

7.1.6 Sets of Lattice Points and Mappings of Z into Z.

You are familiar with many types of mappings from

Chapter 3. An important use of lattice points is the
representation of mappings of Z into Z.

The diagram below displays some of the assign-

ments made by f: x--2x where x is a member of Z.

Domain {. I
Range { . -6

-2

-4

-1 0 1 2 3 ... }
1 1 1 1

-2 0 2 4 6 ... }
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The pairs associated by the mapping can also be
displayed as a subset of Z X Z.

{ (-3,-6), (-2,-4), (-1,-2), (0,0), (1,2), (2,4),
(3,6), }

This subset can be graphed:

Figure 7.20

In this particular mapping we see that (x,y)
(x,2x) or that y = 2x. The arrow from 3 on the x-axis to
the point (3,6) and the arrow from the point (3,6) to the
point 6 on the y-axis illustrate a geometric method of
using the graph to find the integer on the y-axis as-
signed to a particular integer selected from the x-axis.

Select some other integers from the domain of the
mapping illustrated in Figure 7.20 and trace the path
from the related point on the x-axis to the point in the
graph and then over to the corresponding members of the

range on the y -axis.
Which axis contains the graph of the domain of a

mapping?
Which axis contains the graph of the range of a

mapping?
There is also an algebraic method of finding the

image of an integer in the domain of a mapping which

is very valuable in graphing.

Example: Graph the mapping which assigns y in
the range to x in the domain under the
conditon xy = 12.

(1) Select an integer from the domain,
say 2.

(2) Substitute 2 for x in xy = 12; then
2y = 12.

(3) If 2y = 12, then y = 6.
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(4) We see that 2 maps onto 6 and (2,6) is
in the graph.

In this manner we can find other pairs and record

them in a table:

Domain Range

2 6

3 4

4

6

-2

-3

-4

Figure 7.21

Copy and complete the above table. Draw axes on
a piece of graph paper and circle the pointsobtained
from the table.

7.17 Exercises

1. Make a table like that in Figure 7.21 for each
of the following open sentences:

(a) y = x2

(b) y 2x + 1

(c) y = x2 +

(d) y = 2x -1

(e) If x is even, y = 9 and
if x is odd, y 1.

2. Use the tables that you constructed in Exer-

cise 1 to circle the points in the graph of each
condition. Use graph paper and make a separ-
ate pair of axes for each graph.

7.18 Lattice points for Z XZXZ
If Z represents the set of integers, and Z X Z

represents the set of all ordered pairs of integers,
what do you think Z X Z X Z represents?

You have seen that Z may be associated with a
set of points on a line and that Z X Z may be associ-
ated with a set of points in a plane. The set of all
ordered triples of integers may be associated with a
set of points in space (3-dimensional).

Suppose that you wish to meet a friend in an of-
fice building on the corner of some avenue and street.
You not only need to know the number of the street
and the number of the avenue, but also the number of

the floor in the office building.
The longitude and latitude of an airplane at any

instant is not sufficient to determine its position. You
also need to know its altitude.

Although two directed numbers are sufficient to
get you to the point beneath which the treasure is
buried, you don't know where the treasure i s until you
know how deeply it is buried.

In each of the three examples above, it is neces-
sary to have a triple of numbers to locate an object



in space. In a corresponding way, we associate each
point in a three-dimensional set of lattice points with
an ordered triple of integers. In this case we have
three axes instead of two and each point has three co-
ordinates.

Figure 7.22 illustrates the assicartment of coordin-
ates to certain points in space. Study the diagram and
see if you can discover how each triple, (x,y,z), was
assigned.

Figure 7.22

The geometric figure with vertices OABCDEFG
has six faces each of which is a parallelogram. It is
cal led a parallelepiped.

7.19 Exercises

1. (a) Name the six faces of the parallelepiped
using the letters that name the vertices.

(b) How many of the parallelograms have 0 as
a vertex?

(c) Try to draw the parallelepiped that has 0 as
a vertex for three of its faces and has the
point (2,3,4) as the other end of the diagon-
al from 0.

2. (a) Using three pieces of cardboard, try to con-
struct iodel of three planes so that any
pair of planes has a line in common, but all
three have only one point in common.

7.20 Translations in Z X Z

In earlier chapters you learned about translations
as a special kind of mapping. You also learned that
the set of translations in a line, as represented by di-
rected numbers, with the operation "followed by" has
the properties of a commutative group.

In this chapter wo will be chiefly interested in
translations of a set of lattice points into itself in
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terms of coordinates.
We will designate the image of point Pin a map-

ping by "P'" " (read: p-prime). If the coordinates of P
are (x,y), then the coordinates of P' are (x. ,y ).

Translations "move" every point in the lattice the
same distance in the same direction.

I

411

Figure 7.23

The diagram in figure 7.23 shows the effect of a
certain translation on four points:

(-4,-1) (-3,1)

(-1, -3) (0,-1)

( 5,-1) (6,1)

( 3, 1) (4,3)

Questions: In each case, by how much did the 1st
coordinate increase?

By how much did the second coordin-
ate increase?

What is the image of the following
points in the same translation?

(a) (2,3) (b) (6,-2) (c) (-1,2) (d) (0,0)

The above translation may be defined by:

(x,y) (x+1,y+2) or by T1,2.

This indicates that the translation adds 1 to the first
coordinate of each point and 2 to the second coordinate.

Any translation of Z X Z may be designated by the
form:

(x,y) (x+a,y+b) or by Ta, b

where a and b are any integers.
What would be the effect of the translation T0,0?

Since T0,0 or (x,y)---(x+0,y40) maps every point

onto itself it is called theidentity translation.
You are familiar with the composition of mappings.

In connection with translations of a set of lattice points
the composition of To with Tc,d can be expressed as:

To 0 Tc,d Tc+a,d+b

The symbol "o" in the definition above can be



read "with" or "following" since the translation on
the right of the sign translates first. The effect of the
above composition of translations on a point (x,y) is:

(x,y)---(x+c+a, y+d+b)
If you placed a disk on a lattice point, the compo-

sition T2,3 o T 4_1 would tell you to first move

the disk 4 points to the left and 1 down and follow this
2 to the right and 3 up. Since T2,3 o T =

T 2,2 this should be th, same os moving 2 to the left

and 2 up. Figure 7.24 illustrates this by showing the

effect on (0,0):

Figure 7.24

7.21 Exercises

1. Find the composites of the followingpairs of
translations:

(a) o T5, _3 ( b) o T

(c) To o _b

If the composite of two translations is the iden-
tity translation, each is called the inverse of the

other.

2. Use the commutative property for addition of in-
tegers to show that Ta, b o Tc,d = Tc,d o
Ta, b.

3. What property does Exercise 2 demonstrate for
composition of translations?

4. Use a property of integers to show the following:

Taub o (rc,d o To) = (To o Tc,d) o Te,f

5. What property of composition of translations is
demonstrated in Exercise 4?

6. Draw the following parallelogram on graph paper:

(0.3), (7,3), (4, -1)

7. Verify with a ruler that the midpoint of the di-
agonals of the parallelogram in Exercise 6 is

(2,1).

8. Find the images of the poitits on the parallelo-
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gram in Exercise 6 under the translation T_2,_1,

that is map each (x,y) onto (x-2,y-1).

9. Do the image points you found in Exercise 8

form another parallelogram?

10. Verify with a ruler that the midpoint of the im-

age parallelogram's diagonals is the image of
the midpoint of the diagonals of the parallelo-

gram in Exercise 6.

ii. is the image parallelogram of the previous ex-
ercise the same size and shape as the one of

which it is the image?

When we say that a mapping preserves some prop-
erty, we mean that if a set of points has that property,
the image also has that property.

12. On the basis of the translation that you experi-
mented with in the previous exercises, would

you say that translation preserves:

(a) Size and shape? (c) Midpoints?

(b) Parallelism? (d) Lines?

7.22 Dilations in Z X Z

Figure 7.25 shows graphically what happens to a

set of points under dilation:
A dilation of Z X Z is a mappingdesignated by:

(x,y) (ax,ay) or D-0, fio any non-zero

integer a.
If a is less than zero this is sometimes called a dila-

tion with glint Aymmetry, in the ,origin..
In the dilation of the above picture a = 2 or D2

maps (x,y) onto (2x,2y). An equivalent way to say this

is that distances between pairs of points in the image

are twice as great as the distances between the corres-
ponding pairs of points in the first picture. If the dila-
tion had been D_2, the image would have been the same

size but would have been upside down in the third quad-

rant with his nose still against the y-axis but 6 units
below the origin.

Exercise: Dilate the original picture by a factor

of -2. Then the mapping is (x,y)
(-2; -2y).
You will see him increase in size and

stand on his head!

In any dilation both coordinates of each point are

multiplied by the same number. We will refer to this
number as "a" in the following questions:

(a) What happens to points in a dilation if a = 1.

(b) What happens to points in a dilation if a

-1?
(c) If we should allow a to be zero, onto which

point would each point map?

(d) What happens to each point in a set of points

if a = 3?-3?

, 1. v 45. ,..444,4,4,40.072Aiiv.,11
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(e) If a picture is in the 2nd quadrant, where
will the image be under D2? D_2?

(f) Where will any point on the x-axis be mapped
by any dilation of the form (x,y)--..(ax,ay)?
Where will a point on the y-axis be mapped?

7.23 Exercises

1. Use the dilation D3 to graph the following points
and their images:

(-3,-1) (0,3) (7,3) (4, -1)
2. Answer the following questions about the figure

in Exercise 1 and its image:

(a) What kind of geometric figure is the original
figure?
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(b) Is the image the same size as the original?
Shape?

(c) Are the lines in the image parallel to the
lines in the original?

(d) Are midpoints preserved by dilation in this
case?

3. The composition of dilations may be represent.
ed as

Db 0 Da Dab, where Da dilates first.

(a) Which dilation maps every point onto itself?

(b) Is composition of dilations commutative?
Associative?

(c) Which two dilations are the only ones that
have inverses in Z X Z?

7.24 Some Additional Mappings in Z X Z

By now you should have some skill in finding im-
ages if you are given a point (coordinates) and a rule
for finding the image. For each of the mappings below,
find the images of the following points which determine
a parallelogram and the midpoint of its diagonals. Then
answer questions (a)(g).

Parallelogram (-3,-1), (0,3), (7,3), (4, 1)

Midpoint of diagonals (2,1)

(a) First use graph paper to graph the figure
and its image.

(b) Is the image another parallelogram?

(c) Is the image of the midpoint the midpoint in
the image parallelogram?

(d) Does the image have the shape of the orig-
inal? The size?

(e) If the vertices of the parallelogram are
named ABCD clockwise in that order are A'
B', C', D' also in clockwise order?

(f) For each mapping try a special case of com-
position with a mapping of the same kind.

(g) Try composing pairs of mappings of differ-
ent kinds.

Mappings:

(1) (x,y)--..(x,-y)
(2) (x,y)(-x,y)
(3) (x,Y)----.(Y,x)
(4) (x,Y)--s-(Y8-x)
(5) (x,Y)--0(x+3, -4)
(6) (x,y)------..(x+2y,y)

7.25 Summary

1. The assignment of ordered pairs of integers to
lattice points in a plane involves:



(a) Assignment of integers to equally spaced

points on each of two intersecting lines

called axes;

(b) Parallel projection to assign pairs of integers,
one from each axis, to lattice points in the
plane of the axes;

(c) Geometric properties of parallel lines and in-

tersecting lines to show that the assignment

(b) is a one-to-one corroopondence.

2. The set of all ordered pairs of integers is named
Z X Z, and the two integers assigned to a point

are called coordinates of the point.

3. Conditions for coordinates of a point, such as,
"the sum of the coordinates is 3", are expressed
by open sentences, such as "x + y = 3". The set
of ordered pairs, each of which satisfies the con-
dition, is called the solution set of the condition

(or the open sentence). The set of lattice points,
that have these pairs for coordinates, is the

graph of the condition.

4. Compound conditions may be expressed by cnn

necting two open sentences with "and". The
connective "or" can also be used. A pair of in-

tegers satisfies an "and" condition, if it satis-
fies both connected conditions and satisfies an
"or" condition, if it satisfies either.

5. The absolute value of an integer is defined:

Ix I = x, if x > 0

Ix' = -x, if x < 0

6. The idea of a coordinate system in a plane may
be extended to space by assigning number triples

to points.

7. Translations of Z X Z are expressed by:

(x,y)--4..(x+o, y+b), where a and

b are integers.

8. Dilations of Z X Z are expressed by:

(x,y)---(ax,ay), where a is a
non-zero integer.

9. All of the mappings of Z X Z presented in this
chapter preserve lines, parallels, and midpoints.

7.26 Review Exercises

1. List five ordered pairs of integers that satisfy

the condition:

(a) x + 2y = 5 (b) x = 2y (c) y = lx I - 2

(d) ixi + 1Y = 3 (e) xy = 24

2. Translate the following conditions into open

sentences:

(a) Two times the first coordinate minus three

times the second coordinate is equal to

seven.
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(b) The first coordinate is three less that two
times the absolute value of the second co-

ordinate.

(c) The first coordinate is greater than zero

and the second coordinate is less than two.

3. Translate the following open sentences into

words:

(a) y = x -2 (b) lx + y I =5 (c) y > 2 or x < 3.

4. Tabulate the solution set of the following:

(a) x+y=5and x-y=3 (b) y=x2 and x=-1.

5. Graph the following:

(a) y =2x -1 (b) y= -3x (c) x > 0 and y =O.

6. Which quadrant or quadrants contain the points

whose coordinates satisfy the following:

(a) x =2 and y > 0 (b) (x,y) is not on either

(c) y< -5 and x< -6
axis.

(c) x=-10andy =23

7. Draw a pair of axes on a piece of graph paper

and circle the following points:

(6,11) (6,1) (11,6) (1,6) (9,10) (3,10) (3,2)

(9,2) (10,9) (10,3) (2,3) (2,9)

8. Find the image of each point in Exercise 7 for

the following mappings and circle the image

points.

(a) (x/Y)--P-(x, -Y) (c)

(b) y) (d)

9. Find the image of the following triangle and
draw the image triangle on a piece of graph

paper for each of the following mappings:

(0,0), (0,5), (2,0),

(a) (x,y)----(2x,2y) (b) (x,y)(-2x,-2y)
(c) (d) (x,y)-- (2x, -2y)

10. Find the image of the parallelogram, (0,0) (0,3)
(4,3) (4,0), for each of the following mappings
and draw the image on a piece of graph paper:

(a) (x,y)--(x+3y+4) (b) (x,y)--(x+2y,y)

(c) (d)



CHAPTER 8 SETS AND RELATIONS

8.1 Sets

Our everyday speech abounds with collective
nouns such as herd, company, swarm, class, litter, col-

lection, bunch, etc. Examples which use these collec-

tive nouns would include the following: a herd of
cattle, a company of soldiers, a swarm of bees, a class

of students, a litter of kittens, a collection of stamps,

a bunch of bananas.
It is also possible to find examples which use col-

lective nouns which may be unfamiliar to you such as

the following: a gam of whales, a pod of seals, a glit-
ter of butterflies, a singular of boors, a gaggle of
geese, a hutch of rabbits, an army of ants, a murmura-

tion of starlings, a jubilation of skylarks, and a pride

of lions.
In each of the above examples we see how a word,

such as herd, class, pride, etc., is used to denote a

collection of several objects assembled together and

thought of as a unit. Each of the above collections is
said to be welldefined. By this we mean that we can

determine if a given object does or does not belong to

the specific collection being considered.
In mathematics we use the collective noun set

to indicate any well-defined collection. The objects in

sets can be literally anything: numbers, points, lines,
people, letters, cities, etc.. These objects in sets are

called the elements or members of the set. Terms such

as "set" and "element" are part of the basic language

used in the study of all branches of mathematics. Thus,

in this chapter, we will concentrate on terms and con-

cepts dealing with sets and relations between sets.

Let us list ten particular examples of sets.

Example 1: The numbers 1, 2, 3, 4, 5, and 6.

Example 2 :, The solution set of the open sentence
2 +5 =x in (W, +).

Example 3: The vowels in the English alphabet:

a, e, 1, o, and u.

Example 4: The states in the U.S.A. whose names

begin with the letter "M".

Example 5: The numbers 1, 2, 3, 4, 6, 8, 12, and

24.

Example 6: The states in the U.S.A. for which the

names of both the state and its capital
city begin with the same letter.

Example 7: The numbers 2, 1, 0, 1, and 2.

Example 8: The set of whole ntlinbers which are

both even and odd.
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Example 9: The numbers 1, 3, and 5.

Example 10: The outcome set for the tossing of a

;fie.

Notice that the sets in the odd numbered examples

above are defined by actually listing the elements in
the set; and the sets in the even numbered examples

are defined by stating properties which can be used

to determine if a particular object is or is not an ele-
ment of the set.

Sets will usually be denoted by capital letters,

A, B, X, Y
Recall that we used "W" to denote the set of whole
numbers and "Z" to denote the set of integers. The

elements in sets will usually be denoted by lower

cuss letters

a, b, x, y,

There are essentially two ways to specify a particul-

ar set. One way, if it is possible, is to actually list
the ()laments in a set. For example,

A = {0, 1, 2, 3}
denotes the set A whose elements are tht whole num-

bers 0, 1, 2, and 3. Note that the elements are separat-

ed by commas and enclosed in braces { } . The sec-

ond way to specify a set is by stating those properties

which determine or characterize the elements in the

set. For example,
A = { x : x is a whole number, x < 4 }

which is read, "A is the set of all x such that x is a
whole number and x is less than 4."

Note: A letter, here x, is used to denote an ar-
bitrary elementof the set; the colon ":" is
read as such that"; the comma is read as

"and."
If an object x is an element of a set A, i.e., A

contains x as one of its elements, then we write

x E A

This can also be read "x is a member of A", or "x is
in A", or "x belongs to A". To indicate that "x is
not an element of set A" we write

x A.
Thus, in the set A given above we have

0 EA, 1 A, 2E A, 3E A, and 4/ A.

Let us rewrite the Examples 1.10 given earlier in

order to illustrate the above remarks and notation. We



shall denote the sets by A1, A2, A3, A10 respec-
tively.

Example 1' : Ai = {1, 2, 3, 4, 5, 6}

Example 2' : A2 = { x x = 2 + 5, x E W}

Example 3' : A3 = {a, e, i, o, u}

Example 4' : A4 = {x x is a state beginning with
the letter "M"}

: As = {1, 2, 3, 4, 6, 8; 12;24}

Example 6' : A6 = {x : x is a state whose first
letter is the same as the first
letter of its capitol city}

Example 7' : A7 = ( -2, -1, 0, 1, 2)

Example 8' : A8 = (x xe W, x is even, x is odd)

Example 9' : A9 = (1, 3, 5)

Example 10': A10= {x : x is an outcome of a toss
of a die}

Exempla 5'

8.2 Exercises

1. Can you Lod the eight elements in the A4?

2. Can you find the four elements in the set A6?

3. What relationship exists between the sets Al
and A10?

4, What relationship exists between the sets A9

and Al?

5. List the elements in the sets

a) A2

b) A8

6. Can you denote the following sets by stating a
property which determines or characterizes the
elements in the set?

a) A5

b) A7

c) A9

7. List four essentially different sets that you
have studied in previous chapters in this book.

8. What special name do we give to the set de-

fined in Example 8' above?

9. Explain why or why not the following are true.

a) 7 E A10

b) Delaware is an element of set A6

c) 0 E A8

d) x A3

10. Can you state a property that is true of all the
sets Al - A10?

8.3 Set Equality; Subsets

Let A = {0, 1, 2, 3}
and B = {1, 0, 3, 2}
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If we examine the above we find that both sets A

and B contain precisely the same elements although

they are not listed in the same order. The sameness
between the two sets A and B we will indicate by

writing
A =B

and which we read as "set A is equal to set B.
Equality between two sets means that the two sets
contain precisely the same elements and that we do

not have two sets but only one.

In general, if A denotes a set, and B denotes a

set, then for sets A and B, the statement

A =B

means that A and B denote the same set. If sets A
and B are not equal then we shall write

A AB.

Example 1: If X = {0, 1} and Y = {x : x ew, x <
2}, then wehave that X = Y

Example 2: If V= {a, e, o, u) and Y = {u, e,
a, o, i }, then V = Y Note that the
order in which the elements are list-
ed is immaterial

Example 3: If V = {a, e, i, o, u} anti
X = (x : x is a letter in the english
alphabet) then we have that

VAX
In Example 3 above we notice that there is a re-

lationship, other than equality, between sets V and X.

It is clear that every element of set V is also an ele-
ment of set X. We say that set V is a subset of set X

or that set V is contained in set X. We denote the re-
lation "is a subset of" by the symbol " c ". Thus,
in Example 3, VC X.

Definition: Set A is called a subset of set B, de.

noted by A C B, if and only if the sets
A and B have the property that every
element of set A is an element of set
B.

Notice that the above definition means that if A C B
and xE A, then x e B.

Example 1: Let A = {1 }, B = {0, 1, 2}, C =
{3, 4, 5, 6), and D= {0, 1, 2, 3, 4, 5}
Then we see that

AC B, BC D, AC D.
Note that C is not a subset of D be-

cause 6 e C but 6 fi D.

Example 2: Let X = {a, b, c} and Y = {c, a, b).
We see that X C Y because every
element of X is an element of Y.
Furthermore Y C X.

Notice in Example 1 why C is not a subset of D. It
illustrates the following general remark:
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Remark 1: If set A is not a subset of set B, then
set A contains at leastone element
that is not contained in set B.

Notice also that Example 2 shows that A C B does not
exclude the possibilitythat A = B. In fact, we can make
the following general remark concerning how equality
of sets is related to the idea of subset:

Remark 2: Two sets A and B are equal if and only
if A C B and B C A.

Let us illustrate the above stotomont:

If A = {0, 1, 2, 3} and B = { 1, 0, 3, 2} then
clearly A C B because every element in set A is also
an element in set B. Also B C A because every ele-
ment in set B is also an element in set A. Thus, we
conclude that A = B.

From the above we see that every set has at least

one subset, namely, itself. In fact, we can make the

following general remark:

Remark 3: If A is any set, then A C A.

We can examine a given set to see what subsets it con-
tains. For example, what subsets are contained in the
set A = {a, b}? From the above remark we see that A
contains itself as a subset. Thus {a, C A, or equiv-
alently, {a, b} C {a, b}. Also it is clear that set A
contains two subsets each of which contains a single

element. That is

{a} C A and {b} C A.
Next let us consider the empty set as a possible

subset of A. We are asking if

0 C A, or equivalently, if { {a,b} ?
If we assume that 0 is not a subset of A, then Remark

1, given earlier, implies that 0 contains at least one
element that is not an element of A. But 0 contains no
such element since by definition 0 contains no ele-
ments. Thus we cannot say that 0 is not a subset of
A., i.e., 0 is a subset of A. Since the above argument
would apply to any set A, we make the following remark:

Remark 4: If A is any set, then 0 C A.

Note that the set A = {a, b} contains exactly four sub-

sets, namely {a }, {b }, { a,b} and 0 .

Of these four subsets of A we shall say that {a}, {b},
and 0 are proper subsets of A and that {a, b} is not a
proper subset of A. Note that proper subsets of a set
do not contain all the elements of the given set. In
general we have the following definition:

Definition: A is a proper subset of B, denoted by
A C B, if and only if A C B and
A / B.

"A C B" is read "A is a proper subsetof B" or "A
is properly contained in B."

Example 1: Let K = { -1, 0, 1 }. Then { -1}, {0 },
{1}, { -1, 0} are each proper subsets
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Note { -1, 0, 1} is a subset of K but

not a proper subset of K.

Example 2: Let X be any set except the empty set.
Then, because we know that 0 C X
by Remark 4 and because we are given
that 0 , X, we conclude that 0 is a
proper subset of X, that is 0 C X.

8.4 Exercises
1. Let G = {0, 1, 3, 7} and H = {7, 1, 0, 3}. Ex-

plain why or why not G = H

2. If G = {0, 1, 3, 7} and L = {x : xE x < 10}

then explain why

(0) C L (c) G C L

(b) G L C G

3. Let B = {Tom, Dick, Harry}, G = {Judy, Joan}
R = { Tom, Joan, Harry, Judy}.

(a) Explain why or why not B is a subset of R.

(b) Explain why or why not G is a subset of R.

4. Let E = {x : xE W, x is even} and
P = {x : x is a positive power of 2}, i.e., P =

{ 2, 4, 8, 16,...}
Explain why the following are or are not true:

(a) p C E (e) 100 E

(b) P C E (f) 100E P

(c) P = E (9) E C P

(d) 0 6 E (h) 0 C P

5. Let A = {a}
(a) List all of A's subsets.

(b) List all of A's proper subsets.

6. Let B = {a, b, c}

a) List all of B's subsets.

b) List all of B's proper subsets,

7. Using the data obtained in Exercise 5 and 6
above can you make a conjecture concerning:

a) the number of subsets in a set containing 4

elements?

b)sthe number of proper subsets in a set con-
taining 4 elements?

c) the number of subsets in a set containing 5

elements?

d) the number of proper subsets in a set con-
taining 5 elements?

e) the number of subsets in a set containing n
elements?

f) the number of proper subsets in a set con-
taining n elements?

8. What can we conclude if we know that A is a
subset of B but that B is not a subset of A?



1

0

9. Tom, Dick, Harry, Judy, and Ann agree that
when they line up to be photographed the boys
and girls will alternate. List the set of all pos-
sible ways of lining up.

10. In Exercise 9, list the following subsets:

a) The set in which Tom and Ann are next to
each other.

b) The set in which Judy is between Harry and
Dick.

c) The set in which Han.y is in the middle.

d) The set in which Judy is in the middle.

Note: When working with subsets it is often help-
ful to use a drawing such as

to indicate that A is a subset of B. Disks,
that is, circles and their interiors are used
to represent the sets A and B. The drawing
shows that all of set A is contained in set
B, i.e., A C B.

11. What conclusions, if any, can you draw from the
following:

a) X C Y and Y C Z ?

b) R C S and T C R ?

c) M C N and N C Q ?

d) X C G, Y C T, and T C X ?

e) A C Q, Q C R, and R C A ?

f) p C Q and R C Q ?

12. Let A = {p, q, r }. Explain why the following
are correct or incorrect.

a) p E A d) A C A

b) p C A e) {p} E A

c) {p} C A f) 0 C A
13. Which of the following sets are equal?

a) {x : x is a letter in the word "follow" }

b) {x : x is a letter in the word "wolf"}

c) the set of letters in the word "flow"

14. Explain why the sets 0 and {0} are different
sets.

15. Let X C Y and Y C Z. Assume xe X, y E y,
z E Z, and also assume p X, q t Y, r t Z.
Which of the following must be true? Explain

c) ztX Oa O. Xa) xE Z

b) y E X d) p EY f) r tit X
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8.5 Universal Set, Unions Intersections, Complements

In order to avoid certain logical difficulties, we
will assume that in a given discussion the sets being
considered are subsets of a set S, called the universal
set. We have already seen situations where the idea of
a universal set played an important role. For example,
in finding solution sets for open sentences we have
seen that results depend on the domain or universal
set considered.

The solution set of the open sentence

3 + x = 2

is { 1 } if the universal set considered is the set Z
whereas it is 0 if the universal set is set W.

In order to help visualize our work with sets we
shall draw diagrams, called Venn diagrams, which
illustrate them. Here we represent a set by a simple
plane region, usually bounded by a circle. We shall in-
dicate the universal set S by a plane region bounded
by a rectangle.

Example 1: To indicate that a set A is a subset of
a universal set S we have

s

Example 2: To indicate that A is a proper subset
of B where both A and B are subsets
of a universal sot S we have

s

In earlier chapters you considered operations which
assigned new numbers to given ordered pairs of numbers.
Next we shall consider how new sets can be formed
from given sets. There are two important binary opera-
tions that we shall define on ordered pairs of sets. You
will find that the sets assigned to pairs of sets A and
B by these operations have many uses in your subse-
quent work. In what follows we assume that the sets A
and B are subsets of the universal set S.

If A and B are two sets we shall define a new set
called the union of A and B, denoted by "A U B", as
follows:

Definition: A U B is the set that contains those
and only those elements that belong
either to A or to B (or to both) i.e.

A U B = {x : zE A or x E. [3}

....._,....



Example 1:

Example 2:

Example 3:

Remark 1:

Remark 2:

In the Venn
i.e., the region

(Notice that here "or" is used in the
sense of "and/or.")

If A = {0, 1, 2, 3) and B = {3, 4, 5}1
then A U B {0, 1, 2, 3, 4, 5}.

IfV= {a,e,i,o,u }andX= {p,q,r },
then V U X= {a, e, o, u, p, q,

If W is the set of whole numbers and
A = {0, 1, 2, 3}, then W U A = W.

From the definition of A U B we can
hIfig Uft-A A Lw-A

e

AU B=BU A.
Since A U B contains all the elements
of A and also contains all the elemtnes
of B we can conclude that

A (A U B) and B (A U B)
diagram below we have shaded A U B,

covered by sets A and B.

$

(A u I is shocks')

If A and B are two sets we now define a new set
called the intersection of A and B, denoted by "An B",
as follows:

Definition: A n B is the set that contains those
and only those elements that belong to
both A and B, i.e.

A n B= {x :x Aandx B}
Example 1: If A = {0, 1, 2, 3} and B = {3, 4, 5}1

then A n B = {3}.

Example 2: If V = {q, e, i, o, u} and X = {p, q, r},
then V (1 X = { =

Example 3: If W is the set of whole numbers and
A = {0, 1, 2, 3}, then W n A=
{0, 1, 2, 3}= A.

Example 4: If A = {0, 1, 2, 3}, B = {3, 4, 5}, and
C = {0, 3, 5} then (A n B) n C=
{3} n {0, 3, 5} = {3}.

Remark 1: From the definition of A r) B we can
find that A n B =B (1 A.

Remark 2: If A (1 B =0, as in Example 2, then
we say that A and B are disjoint sets.

In the Venn diagram below we have shaded A n B
i.e., the area common to both A and B.

Besides obtaining new sets by assigning a new
set to a pair of sets it is also useful to define a par-
ticular unary operation on every subset of S. If A is a
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$

(A n I is shaded)

given subset of the universal setS, we can define a
new set called the complement of A, denoted by X, as

follows:

Definition: A is the set of all elements of S that
are not contained in A, i.e.,

A ={x: xES,
Examp`e 1: If S ={0, 1, 2, 34, 5} and

A = {0,2}, then = {1, 3, 4, 5 }.

Exo..Jle 2: Let X =W, that is, the universal set
shall be the set of whole numbers.

Let E ={x x (S. W, x is even) and
0 ={x xCW, x is odd}.

Then E = 0 That is, the complement
of the set of even whole numbers in the
set of whole numbers is the set of odd
whole numbers. Similarly, 5=E.

Example 3: Ifs ={0, 1, 2, 3, 4, 5}, A = {0, 2, 4}
and B = {3, 4 }, then

i) T={1, 3}
ii) T3 ={0, 1, 2}

iii) Since A n B = {4} we see that

A n B = {4} = {0, 1, 2, 3}
The Venn diagram for A is given below, i.e., all

of S is shaded except A.

(I is shaded)

The Venn diagram for A U B is given below.
Since A U B is the set consisting of all elements in
S that are not in the set A U B we shade all of S ex-
cept A U B

0....

(At-n is shaded)
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6 Exercises
1. Let the universal set S be as follows:

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Further, let A = {0, 2, 4, 6, 8}, B = {1, 3, 5,
7, 9} and C = {2, 3, 5,7 }.

Determine the following:

(a) A U B
(b) A n B
(c) A U C
(d) A n c
(e) B UC
(f) B n c

2. Using the sets in Exercise 1
lowing:

(a) (A U B) U C (c)

(b) A U (B U C) (d)

3. Using the sets in Exercise 1
lowing:

(a) A U (B n
(b) (A U B) n (A n c)
(c)An(BUC)
(d) (A r l U (A ri

A

C

AUC
A n c

determine the fol-

A n (B n C)
(A B) n c

determine the fol-

4. Using the data obtained in the above exercises
can you state some conjectures concerning the
operations of union and intersection on any sets
A, B, and C? Can you offer any further evidence
to support your conjectures?

5. Let N be the set of natural numbers, i.e., the set
of whole numbers with zero deleted. Let the uni-
versal set be W, that is, the set of whole num-
bers. Determine if the following are true or
false. Explain your answers.

a)NU W=W
b) N n w =
c) N = { 9 }

e ) U N =00
n 14 = 0

wwu N=0
Nwn N=0

6. Using the definitionsof "subset," "intersec-
tion," and "union" write out an argument why
the following are true:

a) (A (1 B) C A

b) (A n B) C A U B.
7. Using your definitions explain why the follow-

ing are true: If A is any set in a universal set
S, then
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a) AU A=A
IA A n A = A

c)AUA=S
d) A n A =0

03 =0
f) 'S
g)AU S=S
h)Arl 0=0

8. If we denote the "complement of the comple-
ment of a set A by "X" determine what set
is equal to.

9. Copy the Venn diagram below and shade in the
sat represented b, Ana:

10. Let us define a new operation, called the differ-
ence of A and B, denoted by "A \ B," as

follows:

A\ B= {xixEA, xE B}

a) Determine if A \ B =A fl B.

b) Determine if A \ B =B \ A.

c) Determine if (A B) C A

d) Determine the set represented by the union
of A \ B, A n B, and B \ A.

e) Determine the set represented by the inter-
section of A \ B and B \ A.

11. Copy the Venn diagram below and shade in the
set represented by (A n B) U ( n

12. Let us define a new operation called the sym-
metric difference of A and B, denoted by "ALB ",

as follows

AAB ={x xE A, xe B, xf (A n B)}
a) Determine if A A B = (A U B) \ (A Cl B).

b) Determine if A A B = (A \ B) kn) (B \ A).

c) Determine if A A B = (A (1 U (A n B).
d) Determine what set is represented by

(AU \ (A A B).

8.7 Membership Tables

We shall now show a helpful way of stating our
definition of A U B by means of a table.



Recall that x 6 (A U B) if and only if xE A or Row 2 indicates this

x E B (or both). Thu3 we have bership possibility for

i) if xE A and xE B, then x E (A U B) Let us i Ilustrate
used to establish an important

ii) if x E A and x B, then x E (A U

iii) if x A and x6 B, then x E (A U B)
AUB=Ani

iv) if x fi A and xjt B, then x je (A U

Notice that (i) (iii) above show that x E (A U B) First we form the

if x is an element of at least oneof the sets A or B, and then take the complement

end (iv) above shows that x f (A U B) when and only Ai
when xliAandxfil3.

fact.
x, no

how membership

membership

i

Since
further

property

[A Law

of

1AU:IAU

there is no third mem-
rows are.requirod.

tables can be
of set. That is

of DeMorgan]

table of A U B,
A U B. That is

8

The table below is a convenient way of expressing

the information in (iv) We
0

given (i) above. call this 0
the Membership Table for A U B. it 0

Row 1:

Row 21

Row 31

Row 4:

A S AU S

0
0

tt
C

0

Table 1

Question 1: Can you explain what is meant by the
entries in each of the rows in the
above table?

Using our definition for A n B we obtain the fol-
lowing Membership Table for A ( B

Row 1:

Row 2:

Row 3:

Row 4:

A s A ns

0

Table 2

The above table indicates that x E (A fl B) if
and only if x EA and x E B.

Quesfa,) 2: Can you explain what is meant by the
entries in each of the rows in the
table above?

Notice that in both of the tables above we had to

have four rows in order to consider all possible cases
of membership for two sets. It turns out that if we are
considering one set then only two rows are required.

For example, the Membership Table for A is

A

Row 1: C

Row 2: 0

Table 3

The reason that we have only two rows is easy to under-

stand. We are considering only a singe set A. Either

xEA or If x E A, then x $ A by definition of A.

This is the information indicated in Row 1. If, on the

other hand, x 4 A, then x E A.
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Table 4

Note that the column headed by A U B makes use of

our previous Table 3 for complements.
Then we form the membership table of A (1 B by

working out A, 8, and then A fl B. That is

A s . I I VII
c cg ft g

c % % c itg cc it g
0 1 0 c c c

Table 5

Note that the columns headed by A and B make use of

our previous Table 3 for complements and the column

headed by A n B applies Table 2 to the entries in

the previous two columns.
Because the resulting entries in the final columns

in Tables 4 and 5 show that

i) if x E (A U B), then x E (A n 13), then, we

have (A U C (A and

ii) if x E (A n then xE (A U B), then we

have (7 fl C (A U B) we conclude that

=AnB.
The information contained in Tables 4 and 5 can be

conveniently expressed in one table as follows:

A e AU I AU{ I I Ini
C C C 0 0 e

c 0 c 0 ¢ c ft

C c g c e 1 ft

0 0 it c c C E

Table 6

Membership tables can also be used to show that

sets are not equal to each other. For example,

Table 7 shows that

AUBtAUB



A I AL.'S AU II 1 1 -Atli

C C C g it 9. fit

C 0 C ft C C

st ecit C ft C

0 og c c C c

Table 7

Wft see that the entries in the columns headed by

A U B and A 1.) B are not identically the same. (The

entries in Rows 1 and 4 are the same but the entries in
Rows 2 and 3 are not the same.) Thus we conclude that

AUB/AUT3.
It was shown earlier that if we are considering one

set then only two rows are required in the membership
table. For example, the table below shows that A = A.

A

Row 1: C

Row 2: le

I

A

C

C

Why two and only two rows are required in such

tables as Table 8 can be seen if we make useof a Venn

diagram. If we reexamine the Venn diagram for sets A

and A, that is

we see that there are two distinct regions determined
which we can number, respectively, as 1 and 2. Then

we have Regions 1 and 2 corresponding, respectively
to sets A and A If x E A

or x is an element in Region 1 this corresponds to Row

1 in Table 8. If )(EA (or equivalently 4A) or x is an
element in Region 2 this corresponds to Row 2 in Table
8. Since there are two and only two recions to consider

there are two and only two corresponding rows to con-
sider.

In a similar way if we are dealing with two sets A
and B in an universal set S, such as in Tables 6 and 7

above, we find there are four distinct regions which are
disjoint. (i.e. they have no elements in common; see
Remark 2 in 8.5). Each of these four disjoint regions
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corresponds to oneof the four rows found in the mem-

bership tables involving the two sets A and B. In the
Venn diagram below we have numbered these disjoint
regions 1, 2, 3, and 4.

I
4

Question 3. Explain why the Regions 1, 2, 3, and
4 in the above Venn diagram corres-
pond, respectively, to the Rows 1, 2,
3, and 4 in the membership table
below.

A a

Row 1: C

Row 2: C

Row 3:

Row 4:

C

C

Table 9

If we draw a Venn diagram to represent any three

sets A, B, and C in a universal set S, as below, we
find there are eight disjoint regions which we number

as indicated below.

Question 4: Explain why the Regions 1, 2, 3, 4, 5,
6, 7 and 8 indicated in theVenn dia-

gram above corresponds, respectively,
to the Rows 1, 2, 3, 4, 5, 6, 7 and 8
in the membership table below.

Row 1:

Row 2:

Row 3:

Row 4:

ROM 5:

Row 6:

Row 7:

Row C:

A II C

C

C

C

C

0
ci
0

C

C

C

C

C

C

C

0
C

g

From the above we see that membership tables in-
volving three sets give rise to eight distinct cases to
be considered, each case corresponding to a row



in the table. The following partially completed table
can be used to determine if A U (B n C) is or is
not, equal to (A U B) (1 (A U C). (That is, we
can determine if "U " is distributive over "n II.)

_A g C Bn C Au(InC) Au g AuC (AuB)n(AuC)

C C C C C C C C

C C g g C C C C

C g C g C
.

C C C

C

g C I C

g C # g
g 9 C 1

g 4 g St ft.

Table 11

8.8 Exercises

1. (a) Copy and complete the following member-
ship table:

!^ ;

(a) A U(B U C) =(A U B)U C
(b) (B = (A n B)nc

5. (a) Copy and complete Table 11 in 8.7

(b) Explain why or why not

A U(B ( C) = (AU B) (1(A U C)
(c) Using a membership table determine if

A (1 (B C) = (A n B)U (A n C)
6. (a) Examine the tables given which involve one

set, two sets, and three sets. Can you de-
scribe a pattern that was used in assigning
"E" and "f" in the columns headed by the
sets being considered?

(b) Can you efficiently set up a table which in-
volves four sets?

(c) How many rows would be necessary in a
membership table which considers

(1) Four sets (2) five sets (3) n sets?

7. We define the differenceof two sets A and B, de-
A B Au 13 IuA noted by "A\B", as the set consisting of all
C C C elements of A which are not elements of B. For
C C example if S = {0, 1, 2, 3, 4, 5, 6, 7}, A =
tt C {0, 1, 2, 3] , and B = {1, 3, 5, 7}, then A\B =

tt {0, 2} and B\A = {5, 7}

(b) What can you conclude from the table given
in 1(a)?

(c) Use a membership table to determine if
A (1 B =B n A.

(d) Use a membership table to determine if

(1)A U A =A (2) AnA=A

(a) Explain why the
table for A\B:

A

following

I

is the membership

Ag
C C

C C

ft C

(e) How are the tables used in (c) and (d) dif-
ferent?

2. (a) Copy and complete the deliowiTirmember-
ship table

A B 'And Au' X 1 Iui
C C

c it
V cg cc it c

(b) What can you conclude from 2(a)?

3. Use membership tables to determine if the fol-
lowing are or are not, true:

(6) A (1 (A U B) =A
(b) A (1 B -1;
(c) (A U (A n 13) =A

(4 AU (A (1 B) = A U B

Using membership tables prove that
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(b) Using membership tables prove or disprove
the following

(1) A\B =A

(2) (A U B)\B =A\B
(3) (A\B) U (B\A) =A U B

(4) (A\B) U (A n B) = A
(c) Usingmembership tables prove or disprove

the following:

(1) A U(B\C) = (A U B) \(A U C)

(2) A n(B\Q = B)\(A n C)

8. We can define the symmetric difference of two
sets A and B, denoted by "ALB ", as follows:

AAB = (A\B) U (B\A)

(a) Construct a membership table to show that

(1) AA B = (A U B) \(A n B)

(2) (AA B) U (A n B) = A U B

(3) (A U B) \(ALB) = A (.1 B
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(4) (AAB)\B = A\ B

(5) MB = BM
(6) AA (131C) = (MB) AC

419, Recall how Venn diagrams were used to repre-
sent one set, two sets, and three sets. Invest-
igate what occurs when four sets are consid-
ered. Can you devise a scheme, not necessarily
using only circles, which indicates four sets
and the proper number of disjoint regions such
that each disjoint region corresponds, respec-
tively, to a row of a membership table involv-
ing four sets? Write a report of your findings.

8.9 Product Sets: Relations

In earlier parts of this book you have often dealt
with the idea of an ordered pair of elements. In many
cases you had to distinguish between the pair (a,b)
and the pair (b,a). For example, this occurred when

you discussed operation, mapping, outcome sets, lat-
tices, etc. In order to stress that the order in which
the elements of a pair should be considered is an im-
portant idea one of the elements in the pair was desig-
nated as the first element or coordinate of the pair and
the remaining element was designated as the second
element or coordinate of the pair. We shall nowmake

use of the idea of ordered pair in order to show how a

new set can be formed from two given sets.
Let A = {1,2,3} and B = {4,6}. We form from the

sets A and B the set of all pairs such that each pair
contains an elementof A as first element and an ele-

ment of B as second element. The pairs which are the
elements of this new set are (1,4), (1,6), (2,4), (2,6),
(3,4), and (3,6). We designate such a setof ordered
pairs of A and B by "AXB", read "the Cartesian
product of A and B" or simply "A cross B". Thus.

AXB = {(1,4), (1,6), (2,4), (2,6), (3,4), (3,6)1

(Nee: The set AXB is named after the math-

ematician Rene Descartes who, in the seven-
teenth century, studies such sets.) Observe
that set A contains three elements, set B con-

tains two elements, and the set AXB contains
six elements.

Given the same sets A and B as above we can al-
so form the set BXA. We have

BXA = { (4,1), (4,2), (4,3), (6,1), (6,2), (6,3)1

We see that if we interchange the order of the

pairs in AXB we obtain BXA. It is important to note

that although BXA also contains six elements we have

AXB 1 BXA.
We can illustrate this inequality by graphing the

lattice points associated with each of the Cartesian
products. In the graph below we see that elements of
AXB are represented by points denoted by crosses
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whereas the elementsof BXA are represented by points

denoted by circles.

6

5

4

3

2

1

s
i

)4( 54C

i
1 2 3 4 5

1a

6

In mathematics we most frequently form the
Cartesian product of a set with itself. Thus, if we
again used the given setsA and B we obtain

AXA = { (1,1), (1,2), (1,3), (2,1), (2,2), (2,3),
(3,1), (3,2), (3,3)1

and

BXB = { (4,4), (4,6), (6,4), (6,6)1

We can also use tree diagrams to represent
Cartesian products. Thus we would have

for AXA

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

and 'xi
(4,4)

(4,6)

(6,4)

(6,6)

A

The following examples illustrate other instances
where we consider the Cartesian product of a set with

itsl ef.

Example 1: Let the set S represent the outcome
set of a 4oss of a single die, that is
S -= { 1;2,3,4,46}. Then S X S would
represent the outcome set for the toss
of a pair of dice.

Example 2: Let T = {a}. Then T X T = {(a,a)}.
Note the,: T TXT.

Example 3: Let Z represent the setof integers.
Then EXZ can be represented by
the set of lattice points in the plane.

Example 4: Let W be the set of whole numbers.
The operation of addition on W is a
mapping which assigns to every ele-

ment of WXW a unique element of W



called a sum. In symbols

WX W- W
We now summarize our ideas about Cartesian

product sets with the following definitions:

Definition: The Cartesian product AXB of two sets
A and B is the set of all ordered pairs
(a,b), where a E A and b E B.

More compactly we have

Definition: AXB I: {(a,b) : a E A and be B}.

Very often in mathematics we are interested in sub-
sets of Cartesian products. Since the elements of a Car-
tesian product set are ordered pairs of elements, the ele-
ments of non-empty subsets of this Cartesian product set
are also ordered pairs. For example, ifAXA = {(1,1).
(1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)1

then X = { (1,1), (2,2), (3,3)) and

Y = { (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)}

are proper subsets of AXA. Such subsets as X and Y
of AXA are called relations on AXA. It is important to
note that a relation is a set of ordered pairs.

We could define the relation X on AXA by an ex-
plicit rule such as X = {(a,b) : a E A, b E A, a =b}
and similarly we could define the relation Y on AXA
by the rule.
Y = (a,b) : a E A, b E A, a < Relations are usual-
ly given by some explicit rule. Note however that

T = { (1,1), (2,1), (3,2)

is also a relation on AXA although an explicit rule
which defines this relation may not be apparent. Again,
a relation is a set of ordered pairs.

If an ordered pair of elements (a,b) is in the rela-
tion R then we shall express this by writing

(a,b)E.12

or by writing

a Rb

We read this latter notation as "a is in the relation R
to b". Thus for the relation X we have (1,1) EX,
(2,2) E X, (3,3) E X or, equivalently, 1X1, 2X2, 3X3.

Similarly for the relation Y.we have (1,3) EY or,
equivalently, 1Y3. It may appear strange, at first, to
see such statements as "1Y3". However, a familiar
example of the "aRb" notation is seen when we con-
sider the relation "equality", denoted by the symbol
"=", on the set WXW. If we write "a = b", and which
we read as "a equals b", where a and b are whole
numbers we always mean that "a" and "b" are differ-
ent names for the same whole number. Thus we have

1=1, 2 = 1+1, 3 = 2+1, 0 =1-1, etc. Let us consider
the following examples of relations.

Example 1: Let D = {2, 3, 5). We define a rela-
tion Lon DXD as follows: (a,b) E L
or a Lb if and only if aED, bED, and
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a <b. Thus L= {(2,3), (2,5), (3,5))
We could write

(2,3) 61_, (2,5)6 L, and (3,5)6 L
or equivalently

2L3, 2L5, and 3L 5.
(We usually express the above by writ-
ing 2 < 3, 2 < 5, and 3 < 5.)

Example 2: Let A = {2, 3, 5, 6}. We define a re-
lation D on A as follows: aDb if and
only if a A, h EA; and n "divides" b.

Hence, D = { (2,2), (2,6), (3,3), (3,6),
(5,5), (6,6) }. We could also write

2D2, 206, 2D3, 3D6, 5D6, and 606.
Observe that D C (AXA).

Note: We frequently denote the relation "di-
vides" by the symbol "1". Then we
would express the above by 212, 216,
313, 316, 515, and 616. The fact that
"3 does not divide 5" could be writ-
ten as 3)(5 or 305 or (3,5) of D.

We could easily graph the relation given in Ex-
ample 2 after constructing the coordinate diagram of
AXA. Instead we shall represent the relation by a dif-
ferent device. A convenient way to designate some re-
lations is by use of arrow diagrams.

If aRb, then we designate two points and label
them "a" and "b". Because aRb we direct an arrow
from thepoint labeled "a" to the point labeled "b".

Note that if bRa then the direction of the arrow
would be reversed.

If we have both aRb and bRa then indicate both

of these instances by

If it is the case that a R a then we draw a loop at
the point labeled "a".

Thus we can draw the following arrow diagram to
represent the relation D in Example 2 above:

Observe that art arrow is drawn which connects
"2" to "6" because 216 and also an arrow is drawn

which connects "3" to "6" because 316. Note that
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no arrow joins "2" to "5" because 2 does not divide
5 (i.e., 4 5). Note also the loops at each point which
indicates that each of the numbers divides itself.

Example 3: Let P be the set of all subsets of the
set {x, y}.
The set P then i s given by

p = {0, {x}, {y}, {x,y}
Consider the relation "is a subset of"
denoted by " C ", on the set P. We
use an arrow diagram to indicate which
elements of P are subsets of each
other.

Observe that at each point representing an ele-
ment of P we have a loop. This is because the elements
of P, namely 0, {x}, {y}, { x,y} are sets, and every
set is a subset of itself. Also, "0" is connected to
"{x}", "{y}", and "{x,y} " because the empty set
0 is a subset of every set. Further, both " {x}" and
"{y}" are connected to "{ x,y}" since {x}C {x,y}
and {y} C {x,y}. Do you see that there are nine ele-
ments, that is, nine sets of ordered pairs of elements,
it the relation " C " on P?

Example 4: As in Example 3 let P be given by

P= {0, {x}, {y}, {x,y}

The relation "i s a proper subset of",
denoted by "c ", on the set P is a
subset of the relation represented in
the arrow diagram above. If the loops
are removed from that diagram then we
have a representation for "C " on P.

Example 5: Let Z represent the set of integers.
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Define the relation S on Z as follows:

aSb if and only if b is the square of A.
Thus

S = { (0,0), (1,1),, (-1,1), (2,4), (3 9),
(-3,9),...} Observe that S C (Z)(Z)
(Because we have both 2S4 and -2S4
we see that the relation S is ast, a map-
ping of Z into Z. Why?)

Example 6: Let C represent the students in a class-
room. Define the relation L on C as
follows. Two students x and y are in
the relation L on C if and only if x
"lives within 1 block of" y. If C repre-
sents the students in your class is the
relation L on C an empty set?

Example 7: The following arrow diagram shows a
simplified family tree.

Tom

The above tree indicates that Tom had
four children, namely, Henry, Bill, Mary,
and Joan. Henry had one daughter,
Emma. Bill and Joan each had two chil-
dren whereas Mary had none. Using
first letters to represent people we see
that the relation "is a grandfather of
is the set {(T,E), (T,G), (T,A), (T,P),
(T,F)}.

Let us now summarize some ideas associated with
the concept of relation. A binary relation (or relation)
R from a set A to a set B assigns to each ordered pair
(a, b) in AXB exactly one of the following statements:

(i) "a is related to b", written "aRb"

(ii) "a is not related to b", written "aR b"

A relation R from a set A to a set B is a subset of
AXB. Since this is true we see that every relation is a
set of ordered pairs, if the relation is non-empty. In
mathematics we aremost often concerned with a rela-
tion R from a set A to the same set A. We say, in this
case, that R is a relation on the set A. Here, of course,
R C (AXA).

8.10 Exercises

1. Using Example 7 in 8.9 list the elements in the
following relations: (Note: Use first letters to
represent people.)

(a) is a father of (d) is an uncle of

(b) is a brotherof (e) is a sister of

(c) is a grandmother of



010StIMIKVIVICAMOVPIPMVINWPOWVATSICAKIMINMIlleteursomignurme.ranwron.t.y~marant

2. Let P = {1,2} and Q = {2,3,4 }. Determine the
following Cartesian products:

(0) PXQ (c) PX P

(b)QXP (d) QXQ

(c) Represent the set R by means of an arrow

diagram.

(d) Explain how your diagram does or does not

indicate the following:

3. Copy the coordinate scheme, given below, on
your paper. Using Exercise 2 above graph the
following Cartesian products using the symbols
indicated:

(1)

(2)

(3)

212

214

218

(4)

(5)

(6)

2145

4515

60160

4

3

2

1

1 2 3 4

(a) graph PXQ using crosses ( X)

(b) graph QXP using circles (o)

(c) graph PXP using triangles (A)

(d) Determine the following:

(1) (PXQ) n (QXP)

(2) (PX P) 11 (Q X P)

(3) (PXP) n (PXQ)
(4) PX (P n Q)

(5) (PXP) U (PXQ)
(6) PX (P U

(e) On the basis of your answers to 3(d) above

can you make any conjectures?

4. Let M = {1,2}, N = {2,3 }, and P = {4,5}

(a) Determine the following:

(1) (MXN) U (MX P)

(2) MX (N U
(b) Graph the results found in (a). Can you make

an observation?

5. Let A = {0, 2, 4} and B= {0,1, 2}

Let R be the relation "is greater than," denot-
ed by "> ", from A to B, i.e., aRb if and only

if a > b.

(a) Write R as a set of ordered pairs.

(b) Of what set is R a subset?

(c) Explain why or why not 0R2.

(d) Explain why or why not 4R3.

6. Let B = {2, 4, 5, 8, 15, 45, 60. Let R be the
relation "divides," denoted by " I", on the set
B, i.e., aRb i f andonly if a I b.

(a) Write R as a set of ordered pairs.

(b) Of what set is R a subset?
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7. (a) Let be the set of all subsets of the set
x }. Draw an arrow diagram to represent

the relation "is a subsetoc", denoted by

" C " , on the set S.

(b) Let T be the set of all subsets of the set

{ x, y, }. Draw an arrow diagram to repre-
sent the relation "i s a subset of", denoted
by el C "I on the set T.

8. Let V = {1, 2, 3, 4, 5). We define a relation R
on V by means of the following table

a 1 2 3 4 5

1 1 2 3 4 5

2 2 1 4 5 3

3 3 5 1 2 4

4 4 3 5 1 2

5 5 4 2 3 1

Prove that for all a, b, and c in V that it is not true
that aR(bRc) = (aRb)12c.

9. Let A = {1, 2, 3, 4}. We define a relation R on
A as the set of ordered pairs of numbers desig-

nated by crosses (X) in the coordinate diagram

of AX A given below.

4

3

2

A

A

2 3 4
A

(a) Explain why each of the following is true
or false:

(1) 1R1

(2) 2R2

(3) 3R2

(5) 40
(6) 40
(7) 4R'4

(4) 2R4 (8) 30
(b) Find {x (x, 2) E R } , that is, find all the

elements in A which are related to 2.

(c) Find { x 4Rx}, that is, find all the ele-
ments in A to which 4 is related.
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10. (a) Is every relation a mapping? Explain.

(b) Is every mapping a relation? Explain.

(c) Let the relation R from A to B be sketched
on the coordinate diagram of AX B. What
test could one devise in order to determine
whether or not R is a mapping of A into B?

11. Research Problem: If set A has m elements and
set B has n elements, then how many different
relations could we define from A to B? Experi-
ment and write a report of your findings.

8.11 Properties of Relations

Recall Example 2 in 8.9 where A = {2, 3, 5, 6)
and we defined a relation "divides", denoted by "D"
on A. We saw that this relation was a subset of the
Cartesian product of set A with itself. In this section
we shall consider only relations R which are a subset
of the Cartesian product of some yet A with itself.
That is,

R AX A.
Again we shorten this by saying R is a relation on a
set A.

Earlier we said that if R is a relation on a set A
we could obtain another relation by interchanging the
elements (a,b) of R. The relation D in Example 2 of
8.9 was

D = {(2,2), (2,6), (3,3), (3,6), (5,5), (6,6)1

The new relation obtained by interchanging the ele-
ments of D we shall call the inverse relation of D, and
denote it by "D.1". Thus, D-1 = {(2,2), (6,2), (3,3),
(6,3), (5,5), (6,6)1

Observe that, here, DY Di. Why?

If again A = {2, 3, 5, 6 }, then

T ={ (2,2), (3,3), (5,5), (6,6) is a relation on A.

Observe that, here, T = Ti.
The above suggests the following definition:

Definition: Let R be a relation on a set A. The
inverse relation of R, denoted by
"Ri", consists of exactly those
ordered pairs (b,o) such dint (a,b) E R.
In short,

R.1 = {(b,a) : (a,b) E R}

Question 1: HS is the relation on Z given in Ex-

ample 5 in 8.9 that is

S = {(0,0), (1,1), (-1,1), (2,4), (-2,4),
(3,9),...}, then how can you describe
the inverse relation SI on Z?

Question 2: How can you describe the inverse re-
'teflon of the relation described in Ex-
ample 7 of 8.9?

The relation D on set A in Example 2 of 8.9 has a
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property which we can see by re-examining the arrow
diagram of this relation. This is, at every point we
find a loop. This is because 212, 313, 5 1 5 and 616.
Thus for every a E A, we have o D a or (a,a) E D. We
describe this situation by saying D is a reflexive re-
lation on A.

Similarly, the relation " C " on the set
P = (0, {x}, {y}, {x,y} }, as given in Example 3 in
8.9 is a reflexive relation on P. Again, the arrow dia-
gram indicates this reflexive property.

The relation " C " on the same set P, as given
in Example 4 in 8.9 is not a reflexive relation on P,
because it is not true that for all a E P, we have a
a. (In fact, for all a E P, we have a ot a. This situa-
tion is described by saying " c " is irreflexive on P.)

Let us make a precise statement concerning this
property of reflexivity that a relation on a set may or
may not possess.

Definition: Let R be a relation on a set A. R is
called a reflexive relation on A if and
only if for every a EA, (a,a) E R or
aRa. In other words, R is reflexive on
A if and only if every element in A is
related to itself.

Question 3: Let S be the relation on Z given in
Example 5 in 8.9, that is

S ={(0,0), (1,1), (-1,1), (2,4), (1,4),
}. Is S reflexive on Z? Explain.

Question 4: Let V = { a, e, i, o, u }. Let R be the
relation on V given by

R ={(a,a), (0,0), (0,0, (0,1), (lei),
(o,o), (u,u)}.

Is R reflexive on V? Explain.

Question 5: As in Example 6 of 8.9, let C repre-
sent the students in a classroom. Let
L denote the relation "lives within 1
block of" on C. Is L reflexive on C?
Explain.

Certainly, one of the most basic relations that we
encounter with the set of whole numbers W is that of
"equality," denoted by "=". Throughout this course
we have assumed that for all xE W, x = x. In short, we
have assumed that "is equal to" is a reflexive rela-
tion on the set W.

Another important property of the relation "is
equal to" on the set W which we have assumed is the

following:
If x, y are whole numbers and x = y, then y = x. We ex-

press this property by saying that "is equal to" is a
symmetric relation on the set W.

Again let C represent the students in a classroom
and L denote the relation "lives within 1 block of"
on C. It is evident that if Bill lives within one block
of Jim, then Jim lives within one block of Bill. The



relation "lives within one block of is a symmetric re-

lation on C.
Observe that when discussing whether or not a re-

lation is symmetric on a set we encounter such state-

ments as

If x = y, then y = x, and

If Bill lives within one block of Jim, then Jim

lives within one block of Bill,

Both of the above statements are of the form, "If

p, then q." Such statements are called conditional

statements and are denoted by

p

The conditional "p --.-q" can also be read as "p

implies q." Conditional statements occur frequently,

especially in mathematics. Therefore, as your study of

mathematics progresses, you will become more familiar

with properties of conditional statements. For now, let

us note the following:

Remark: The conditional is true unless

p is true and q is false. In other words,
we do not allow a true statement to imply

a false statement.

Another common statement in mathematics is the

form "p if and only if q." Such statements are called

biconditional statements and are denoted by

You recall that "if and only if" occurs in many of the
definitions that you have seen. If p. q we mean

that both and Since both v-i--141
and "----0-" are relations on statements we can de-

termine what properties they possess. We find that
is reflexive, that is, for all statements p,

it is true that In other words, a statement

always implies itself. However, is not a

symmetric relation. It is false that if we know p

that we can conclude that For example, the

following statement is true:

If a triangle has three sides with equal measure,

then it has two sides with equal measure.

However, the following statement is not a true statement:

If a triangle has two sides with equal measure, then

it has three sides with equal measure.

If we denote "a triangle has three sides with equal

measure" by "p" and denote "a triangle has two sides

with equal measure" by "q", we see that

does not always imply

Thus is not a symmetric relation.

The above examples suggest the following definition:

Definition: Let R be a relation on a set A where a

and b are any elements of A. We say

R is a symmetric relation on A if and
only if aRb implies that bRa.
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We can rewrite the above as

R is a symmetric relation on A-P---(aRb----
bRa)

Example 1: Let K = { 1, 2, 3}. An easily found

relation R on K is to consider the
Cartesian product KX K. Since KX K
C K X K, K X K is a relation R on K.
We find that R = {(1,1), (1,2), (1,3),
(2,1), (2,2), (2,3), (3,1), (3,3), (3,4)).

Note that 11"
3R1, etc. If we consider the arrow dia-

gram of R on K

We observe that R is a symmetric re-
lation on K since whenever there is an

arrow from a to b there is a correspond-
ing arrow from b to a. Recall that the
loops signify R is also a reflexive re-
lation on K.

Example 2: Let K = { 1, 2, 3} as above and con-
sider the relation R1 on K. Recall

R1 = {(b,a) aRb). We find that in-
terchanging the elements in each or-

dered pair of R gives rise to the same

set. Thus = R. In Example 1 we

saw that R is symmetric on K. Since
R1 = R then, of course, R1 is also
a symmetric relation on I. Note that
the arrow diagram of R is the same
as the arrow diagram of R. An exam-
ination of Example 2 leads us to the

following remark:

Remark: If R is a symmetric ?elation on A, then

121 is a symmetric relation on A.

Example 3: Let J = {1, 2, 3, 4}. Let us define a
relation S on J as follows: If a, bEJ
then aSb ---.- a 7 b. Thus 1S4 be-

cause 1 ,/ 4. Also 4S1 because 4 /1.
The arrow diagram for S on J indicates

that S is a symmetric relation en J.



Example 4: Let Z be the set of integers. The re-
lation "less than or equal to", de-
noted by "<" is not a symmetric re-
lation on Z because for all a, b E Z,
a < b does not imply that b < a. For
example 3 < 4 does not imply 4 < 3.

The relation described in Example 4, that is " <"
on Z, is not symmetric, however it does illustrate an
interesting property. What comid you conclude if you
were told for two integers a and b that a < b and also
that b < a? The only way that this could be true,
would be to have a = b. We describe this situation by
saying that the relation " <" is anti-symmetric on Z.
Note that if a b, then possibly a < b or possibly
b < a, but never both. In general we have the following
definition.

Definition: Let R be a relation on a set A where
a and b are any elements of A. We say
R is an anti-symmetric relation on A
if and only if aRb and bRa implies
a = b.

Example 1: Let N be the setof natural numbers
and let D be the relation in N defined
by "x divides y". D is anti-symmetric
on N since x divides y and y divides
x implies x = y.

Example 2: Let S be a collection of sets, and let
R be the relation on S defined by "A
is a subset of B." Then R is anti-
symmetric on S since A C B and
B C A implies A = B.

Question: Can you describe a relation on a set
which is not anti-symmetric?

The next property that we shall examine is illus-
trated by the following: We know for the set W of whole
numbers that if a = b and b = c, then a = c. The rola-
lion of "equality" is said to be a transitive relation

on W. Similarly, if we examine the relation R in Ex-
ample 2 above we should recall that if A C B and
B C C, then A C C. We say that the relation " C "
is a transitive relation on S. The general property is
given in the following definition.

Definition: Let R be a relation on a set A where
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a, b, and c are any elements of A. We
say that R is a transitive relation on
A if and only if aRb and bRc implies
aRc.

Example 1: Let Z be the set of integers and let R

be the relation on Z defined by "x is
less than y." Then R is a transitive
relation on R since

if x < y and y < z, then x < z.

hi particular,

0 < 7 and 7 < 100 --" 0 < 100.

Also,

-5 < -13 and -3 < -5 < -1

(Recall that the symbol " " can
be read "implies")

Example 2: Let H = {a, b, c, d }. Let us define a
relation R on H as follows. R

{(a,b), (b,c), (a,c), (c,d), (d,a)}

If we examine the arrow diagram of the
relation R on H

we see that aRb and bRc aRc.
However,

aRc and cRd does not imply
that and. The arrow points from d to a.
This means dRa and not the required
and. Since the relation R fails to be
transitive for at least one triple of
elements of H, we say that R is not
transitive on H.

Example 3: Let B = {2, 3, 6, 12} and let D be the
relation "divides" on B. The arrow
diagram below indicates that 316 and
6112s-3 l 12. Also 216 and 6112
0-2112.



We say that D is a transitive relation on B.

We have pointed out in this section that the im-

portant relation of "equality" on the set W satisfies

three properties, namely, the reflexive, the symmetric

and the transitive properties. That is,

(i) For every whole number a, a = a (Reflexiv-

ity)

(ii) For any whole numbers a and b, a = bo.b =

a (Symmetry)

(iii) For any whole numbers a, b, and c, a = b and

b = a = c (Transitivity)

In the next section we shall see that if any rela-

tion on a set has these three properties some import.

ant results can be derived. Because equality on a set

is reflexive, symmetric, and transitive we refer to any

other relation on a set which has these properties as

an equivalence relation. Thus we have the following

definition:
Definition: A relation R on a set A is an equival-

ence relation if and only if

(1) R is reflexive, that is, for every

a E A, aRa.

(2) R is symmetric, that is, for every
a and b in a, aRb implies bRa.

(3) R is transitive, that is, for every

a, b, and c in A, aRb and bRc

implies aRc.

Example 1: Consider the relation "has the same
first name as" on the set C of stu-

dents in a classroom. We must check

to see that the requirements in the
above definition are satisfied. Let x,

y, and z be any students in the class.

Then

(1) x has the same first name as x

(ii) if x has the same first name as y,

then y has the same first name as

x.

(iii) if x has the same first name as y

and y has the some first name as

z, then x has the same first name
as z.

Since each of the above is true, "has

the same first name as" is (i) reflex-
ive, (ii) symmetric, and (iii) transitive
and hence is an equivalence relation

on C.

Example 2: Consider the relation " C " on all
the subsets of A = {a, b}.

We find that " C " is reflexive and

transitive on A, but since {a} C

(,,b} does not imply {a,b} C {c}
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we have that the relation is not sym-
metr:o on A. Hence it is not an equiv-
alence relation on A.

Example 3: Let K = {1, 2, 3) with a relation de-
fined on it which is illustrated by the

arrow diagram below.

Examine this diagram and convince
yourself that the relation illustrated
is (i) reflexive, (ii) symmetric, and
(iii) transitive on K, and hence is an

equivalence relation.

8.12 Exercises

1. Let E = {a, b, c} with the following relation R

defined on it.

R = {(a,a), (a,b), (b,c), (b,b), (c,c), (b,a)}

(a) Explain why R is a relation on E.

(b) Draw an arrow diagram which represents R

on E.

(c) Explain why or why not R is (1) reflexive,

(2) symmetric.

(d) Write out theordered pairs in F2-1.

(e) Draw an arrow diagram for R1 on E.

2. Let S be a relation on a set F where F = {1, 2,

3, 4} and S = { (1,1), (1,3), (2,2), (2,3), (2,1),

(3,2), (3.3). (3,4), (4,1)1

(a) Draw an arrow diagram for S.

(b) Explain why or why not S is

(1) reflexive
(2) symmetric
(3) transitive

3. Each of the following open sentences defines a

relation on the set W of whole numbers. Deter-

mine if each is or is not a reflexive relation on

W.

(a) "a is less than or equal to b"

(b) "a + b =8"

(c) "a divides b"

(d) "a is greater than h"

(e) "a is equal to b"

(f) "the square of a is b"

(g) "a b is divisible by 5"

4. Using the open sentences in Exercise 3 deter-

mine if each is or is noto symmetric relation on



5. Using the open sentences in Exercises 3 de-
termine if each is or is not a transitive relation
on We

6. Which of the relations, in Exercise 3, if any,
are equivalence relations?

7. (a) When is a relation R in a setA not reflexive?

(b) When is a relation R on a set A not sym-
metric?

(c) When is a relation R on a set A not transi-
tive?

8. Let A = {1, 2, 3}. Consider the following re-
lations on A.

R1 = {(1,1), (1,2), (1,3), (2,1), (2,3)1

R2 = {(1,1), (2,3), (3,2), (1,2), (3,1)1

R3 = {(1,2), (2,3), (1,3)1

R4 = (1,1)/
R5 = AX A
Determine whether or not each of these rela-
tions is

(G) reflexive

(b) symmetric

(c) transitive

9. Examine the relation "is a brother of for a set
of people with respect to

(a) reflexivity

(b) symmetry

(c) transitivity

10. Let A = {a, b, c}. Consider the following rela-
tions on A.

R1 = {(a,a), (b,a), (b,b), (c,b), (b,c)}

R2 = {(a,a)}

R3 = {(a,b)}

R4 = {(a,a), (b,c), (c,b)}

R5 = AX A

Determine whether or not each of the above re-
lations is anti-symmetric.

11. Let L be a set of lines in the plane and let P
be the relation on L defined by " 1 is paral-

lel to P2".
Determine whether or not P is (a) reflexive,
(b) symmetric, (c) transitive, (d) anti-sym-
metric, (e) an equivalence relation. (Assume a
line is parallel to itself)

12. Let S be the collection of subsets of {x, y, z}.
If A and B are elements of S the following are
relations on S:

(i) "A C B"
(ii) "A C B"

(iii) "A is disjoint from B"
(iv) "A is not equal to B"
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Determine if the above relations on S are (a)
reflexive, (b) symmetric, (c) transitive and (d)
anti-symmetric.

8.13 Partitions

Examine the drawing below in which we have
drawn a closed curve about a set of eleven geometric
figures. Let us designate this set of figures as G.

We see that not all of the figures have the same num-
ber of sides. In fact we find there are four 3-sided fig-
ures (i.e., 4 triangles), four 4-sided figures (i.e., 4
quadrilaterals), two 5-sided figures (i.e. 5 pentagons)
and one 6-sided figure (i.e., 1 hexagon).

Next we define a relation R on the set G as fol-
lows: If x and y are any elements of G we say that xRy

if and only if x and y have the same number of sides.
Thus any two triangles in G are in the relation R

to each other whereas a triangle and a quadrilateral
are not in :he relation R to each other.

Because every geometric figure in G has the same
number of sides as itself, we have that R is reflexive
on G. If x has the same number of sides as y, then y
has the same number of sides as x. Hence, R is sym-
metric on G. Also if x has the same number of sides
as y and y has the same number of sides as z, then x
has the same number of sides as z. Thus R is transi-
tive on G. From the above we conclude the R is an

equivalence relation on G.
Let us now examine the effect of the equivalence

relation R on the set G. It is important to note that the
relation R effects a separation of the elements of G in-
to subsets. Each of these subsets contains exactly
those geometric figures which have the same number
of sides (See how this is indicated in the drawing a-
bove). Let is designate these subsets of G as T (the
set of triangles), Q (the set of quadrilaterals), P (the
set of pentagons), and H (the set of hexagons). The
collection of subsets of G

{T, Q, P, H}
produced by the equivalence relation R on G we call

a partition of G.
The subsets which form the partition of G have

two important properties which we next observe.

Observation 1: The union of the subset T, Q, P,
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and H of G is the set G. That is

T UQUPUH =G
Observation 2: The subsets T, Q, P, and H of G

are pairwise disjoint. This means
that if we consider any two dis-
tinct subsets their intersection is
the empty set. We see that this is
true because

Tnia =0, Tnp.0,TnH=0
Q n P =0, Q n H =0, and P n H 0.

It is no occident that R effected a partition of G into

pairwise disjoint subsets whose union is G. It turns

out that we obtained such a partition of G because R

is an equivalence relation on G. The most significant

property of an equivalence relation on a set is that it
always partitions the set into pairwise disjoint subsets

whose union is the given se.
We could also say that an equivalence relation R

on a set A partitions the set by putting those elements

which are related to each otherin the same subset of

A. Each of these subsets is called an equivalence

class. In the example above T, Q, P, and H are equiv-

alence classes. The following examples will illustrate
many of the ideas examined above.

Example 1: We shall define a relation R on the set
Z of integers as follows: Let x and y

be any two integers. We say xRy if
and only if both x and y are even or
both x and yore odd. Thus 3R7 but
308. The relation R is an equival-
ence relation on Z. (Prove this.) More-
over the relation R establishes two
subsets of Z:

E = {x Z, x is even) and

0 = {x : r.EZ, x is odd}
Every integer in Z is either on element

in E or an element in 0, but never an
element in both E and 0.

(I) E U 0 =Z and
00E110=0
The equivalence relation R on Z ef-
fects a partition on Z. This partition
is {E, 0}. E and 0 are equivalence
classes in this partition.

Example 2: Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12}. We define a relation R on A

as follows: Let a and b be any ele-
ments of A. We say aRb if and only if
a and b have the same remainder when
they aro divided by 4. It is easy to see
that R is an equivalence relation on A

which determines the following subsets

of A:
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B1 = {1,5,9}, 8? = {2,6,10}, B3 =
{3,7,11 }, B4 = 4,8,121.

We note that BA U BAU B3 U B4 = A
11 =and also that B 0, Bi n93=

0, B = B2 11 113 = 0, 132 n
B4 = 0, and B3 n34= 0
Thus R effects the partition { B1, B2,

93, B4} on A.

Example 3: Let C be the set of students in a class.
It is clear that tho "hei4 the
same first name as" is an equivalence
relation on C. Further, this relation
partitions C into equivalence classes.
(Examine your own class.) It could
happen that every student had a differ-
ent name. If in such a class there are
twenty students we find that the equiv-
alence relation still partitions the set.
Here each equivalence class would have
in it a single element. Thus, the parti-
tion would be a set having twenty equiv-
alence classes as elements.

Example 4: Let A = {a,b,c }. We find that there
are five different possible partitions
of A. These are,

(i) {a,b,c }}
(ii) { {a}, {b, c} }
(iii) { {b}, {a, c} )
(iv) { {c}, {a, b} }

(v) { {a}, {b}, {c} 1
Each of the five sets above is aparti-
tion of A. Again we see that the ele-
ments of a partition are sets. In (ii)
the elements that make up the partition
{ {a}, {b, c} } are the equivalence
classes {a} and { b, c}. We have that

{a} U {b, c} = {a, b, c} =A. Also
{a} U {b, c} =0.
Similar statements are possible for (i),
(iii), (iv), and (v).

You have already encountered, in earlier chapters,

examples of equivalence relations inducing a partition

on a set. In Chapter 4 you constructed the set of inte-

gers. Recall that you were shown that each integer in

Z is a set of orderedpairs (a, b) of whole numbers.

Such integers as

+ 4 = { (0,4), (1,5), (2,6), (3,7), . .

0 = {(0,0), (1,1), (2,2), (3,3), .

3 = { (3,0), (4,1), (5,2), (6,3), }

illustrate that every integer is a set of ordered pairs

of whole numbers. Using the language of this chapter

we can now say that the set Z of integers is a parti-

tion of the set W X W. Each integer is an equivalence



class in this partition. Observe that the union of all
integers is W )( W and the intersection of any pair of
distinct integers is the empty set. Do you recall the
relation R which effected this partition of W X W into
the equivalence classes called integers?

Using some ideas of this chapter we shall again
define that relation. Let (a,b) and (c,d) be any elements
t)fW X W. We say that (a, b)R(c,d) if and only if a+d =
b+c. Thus (1 5)R(3,7) because 1+7 = 5+3. If two ele-
ments of W X W are in the relation R to each other
they belong to the same equivalence class. We see
that this is true here since (1,5) E + 4 and (3,7) E + 4.
It can be shown that the relation R is an equivalence
relation on W X W. But we will leave this for an exer-
cise.

We are seldom interested in a set unless some re-
lation or operation has been defined on the set. In this
settion we hove seen that defining an equivalence re-
lation R on a set A yields a partition of A into equiv.
Glence classes. We might say that the relation R on A
gives a structure to the set A. Of course different rela-
tions defined on A yield different structures. We shall
next consider another important way to structure o set
which deals with 'he frequently encountered idea of
order.

A partial order on a set \ is a relation on A which
is

(1) reflexive, i.e., for every a EA, aRo

(2) anti-symmetric, i.e., for all a, bE R, aRb
and bRa implies a = b.

(3) transitive, i.e., for all a, b, c E R, aRb
and bRc implies aRc.

Example 1: Let S be the collection of all subsets
of {a, b }. The relation " C " defined
on S is a partial order on S. Why? This
relation is illustrated by the arrow dia-
gram below.

Example 2: Let A = {1, 2, 3, 4, 5, 6).

The relation "divides" defined on A
is a partial order on A. Explain. The
arrow diagram below illustrates this
relation.
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8.14 Exercises

1. Let A = {1, 2, 3, 4, 5, 6 }. Explain why each
of the following is or is not a partition of A.

(a) { {1,2 }, {5,6,3} }

(b) { {1,2 }, {3 }, {4,5}, {6,2} }
(c) { {1,3,5 }, {2,4,6} }

(d) { {1 }, {2}, {3 }, {4 }, {5 }, {6} }
(e) { {1}, {6,4 }, {3,5,2} }

(f) { {1,2,3,4 }, {4,5,6} }

(V) { {1,2,3,4,5,6}
(h) { {1,2 }, {3,4} }

2. Find all the partitions of {a,b }.

3. Explain why "<" defined on W does not parti-
tion W.

4. Let R be an equivalence relation on A. If we
assume that cRa and cRb why can we conclude
that aRb?

5. Find all the partitions of {1,2,3,4 }.

6. (a) Use an arrow diagram to illustrate the re-
lation "divides" on the set E = {1, 2, 3,
5, 6, 10, 15, 30 }. Is this relation a partial
ordering on E'2

(b) Explain why or why not the relation " <"
is a partial ordering on the set W.

7. Consider the following relations defined on the
set P of people in the United States:

R1 : "lives in the same state as"

R2 : within 1 mile of"

R3 : "is the father of"

R4 ; "is a member of the same political party
as"

R5 : "has the same I.Q. as"

(a) Determine which of the above are equival-
ence relations on P.

,re^, ,
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(b) Describe the equivalence classes in the

partitions effected by the relations in (a)

which are equivalence relations on P.

8. In Section 8.13 we defined a relation R on W X

W as follows: (a,b)R(c,d) if and only if a+d =
b+c. Prove that R is an equivalence relation.

9. Research Problem: Let R be an equivalence re-
lation on A. For every a 6 A, let

B= {x : xRa}
Prove that R effects a partition on A.

8.15 Summary

In this chapter you have encountered someof the

most basic terms used in the study of mathematics.
Terms such as set, relation, partition, etc. will be-
come, in time, part of your basic vocabulary.

With respect to sets you should be able to give a

clear and complete description of the following terms:

set equality, subset, proper subset, universal
set, union, intersection, empty set, comple-

ment, disjoint sets, product set.

With respect to relations you should understand

what is meant by the fol lowing terms:

relation, inverse relation, reflexivity, irreflex-
ivity, symmetry, transitivity, anti-symmetry,
equivalence relation, partition, partial order.

Also you should be aware of the tools we have used

in our study. These tools include:

set notation, Venn diagrams, membership tables,

arrow diagrams, the conditional relation

At this time you should review, for yourself, the
meanings of the above terms. Restudy any terms whose

meanings are not clear to you.

8.16 Review Exercises

1. Let S be a universal set where

S= f p, q, r, s, t, u, v/

Let A = {p, q, r, s }B = {t, u, v}, C
{p, r, t, v}, D = {t}

(a) Determine the following sets:

(1) A U B

(2) A n B
(3) A U C

(4) A n c

(5) B U C

(6) B n c

(7)AUD
(8) A n D

(b) Find the complement of each

ing sets:

(1) A (3) C

(2) B (4) A nc
(c) Which of the sets A, B, C, D

(9) D U D

(10) B n B

(11) s n D

(12) S U D

of the follow-

are

(5) A U D

(6) A U B
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(1) subsets of each other?

(2) proper subsets of each other?

(3) pairwise disjoint?

2. Write three statements that are true of every

set A.

3. Let B = {x: x E W, x is even, x < 3 }.

(a) Rewrite set B by listing its elements

(b) List all the subsets of B.

(c) List all the proper non-empty subsets of B.

(d) Determine B X B.

(e) Is {(0,0), (0,1)} a relation on B?

(f) Is {(0,0), (0,2)} a relation on B?

(g) Draw an arrow diagram for B)( B

4. Let V = {0, 1, 2, 3}. Let R be a relation on V

defined as follows:

R = { (0,0), (0,1), (1,0), (1,2), (2,1), (2,2), (0V).

(3,3) }

(a) Draw the arrow diagram for R on V

(b) Is R an equivalence relation on V?

(c) What would occur if we defined a new rela-

tion S on V where

S = R U {(1,1), (2,0)1?

5. (a) Prove or disprove that (A n B) U (A n B )
=A

( b ) (A n B) u (A n ) u ( A ni3)=?

6. Give an example of a relation R on a set A

which is

(a) reflexive, anti-symmetric, transitive

(b) reflexive, symmetric, transitive

(c) irreflexive, not symmetric, not transitive

(d) irreflexive, not symmetric, transitive

(e) irreflexive, symmetric, transitive

7. Determine which of the following aretrue

(a) If A C B, then A C B

(b) If AC B, then 15 C

8. Let D= {2, 4, 6, 8, 10, 12}

Explain why the following are or are not parti-

tions of 0:

(a) { {2,4 }, {6,10 }, {4,12 }, {8}

(b) { {2,4,6 }, {8,10 }, (L.121

(c) {2 }, {6,12 }, {4,10}

9. Let R be a relation on set A. Determine if the
following is true: R is symmetric on A if and

only if R = R-1 .

10. Let BA C=Bnt. Prove tr disprove that
A n (BC) = (A n B) A (A (1C)


